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TECHNICAL NOTE 3055

A WEW METHOD OF ANALYZING EXTREME-VALUE DATA

By Julius Lieblein
SUMMARY

A new method is presented and proposed for analyzing extreme-value
data which may arise in a wide variety of applications.

Classical spplicetions of statistical methods, which usually con-
cern average values, are inadequate when the quantity of interest is
the largest (or smallest) in a set of magnitudes. This is the situation
in a nunber of fields, for example, gust loads of an airplane in flight,
the highest temperatures or lowest pressures in meteorology, floods and
droughts in hydrology, breasking strengths in materials testing, break-
down voltage of capacitors, and human life spans, in all of which appli-
cations of methods for dealing with extremes have already been made.

Discussion of the proposed method is preceded by the necessary sta-
tistical theory which also furnishes a basis for evaluating the new
method in relation to existing ones. The techniques described provide
a simple means for estimating the necessary parameters, making predic-
tions from the fitted curve, estimating the reliability, and evaluating
the efficiency of the method in relation to other methods. Moreover,
these quantities are all produced by a single set of computations
involving just two work sheets. This background material is not essen-
tial to an application of the method and may be omitted if desired. The
method itself is summarized for practical convenience, illustrated step
by step, and compared with present procedures. The advantages of the

proposed method are also discussed, chief among which are:l (1) For the
first time there is available an unbiased estimator of known efficiency.
(2) The proposed estimator appears to be more efficient than a simplified
form of the Gunmbel estimator in many practical cases, namely, for samples
of about 20 or more and a probability level P = 0.95 .or more. The
improvement in efficiency increases with Increasing P or increasing
sample size. When compared with the original Gumbel estimator, the pro-
posed one is up to twice as efficient. (3) The confidence intervals are
found to a closer approximation and are in many cases narrower than the
ones in ‘the Gumbel method.

Thus, while the Gumbel techniques are very useful in many cases, the
methods developed In this report will be of speclial Interest to those who
must extract the greatest amount of information from a limited set of
costly data.

lThe technical terms used here are defined and discussed in the
maln text.
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Included in the report are several sppendixes presenting mathematical
developments not given in the text.

INTRODUCTION

The statistical theory of extreme values bas been found to have
wide applicability in many diverse fields, for example, meteorological
extremes, floods, droughts, bresking strength of textiles and other
types of materials, span of human life, gust loads experienced by an
airplane in flight, and breakdown voltage of capacitors.

The two existing methods of analyzing extreme-value data have
several limitations, discussed in the body of this report. One of these
methods is known as the method of maximum likelihood and has been
described by Kimball (refs. 1 and 2). The other, the method of moments,
has been developed by Gumbel (refs. 3 to 5) and its application to
gust-load problems has been discussed in detail in a previous NACA
Technical Note (ref. 6).

The present report gives a new method for dealing with the problem
of amalyzing extreme measurements, treated in reference 6, which has
certain advantages over the existing methods. The method of application
is presented in detail, together with the necessary work sheets and other
data, and the new method is compared with the method of moments previously
in use. For definiteness, the discussion is at times presented in terms
of application to gust loads, but the method is also applicable to other
fields where extreme values occur.

This work was conducted at the National Bureau of Standards under
the sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

The author has benefited greatly from the generous cooperation of a
number of persons in connection with the work embodied in the present
report. He wishes particularly to stress his gratitude to those persons
in the National Bureau of Standards whose painsteking efforts were indis-
Pensable to the successful completion of the entire project: Dr. Dan
Teichroew of the Institute for Numerical Anslysis for carrying out on IBM
equipment the empirical sampling procedures which made possible the compar-
ison of methods in the section "Theoretical Camparison"” and in appendix B;
Miss Irene Stegun of the Computation ILeboratory, under whose supervision the
basic computations described in appendix C were performed; and to the fol-
lowing personnel of the Statistical Engineering Iaboratory: Mr. I. R.
Savage for contributing appendix A, concerning the nonexistence of suffi-
cient statistics, and Mrs. L. S. Deming for her success in producing the
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particularly effective form of the tables and figures from unusually
difficult material. Thanks are also due to Mr. W. R. Knight, guest
worker from Antioch College, for the very numerous smeller computations.

SYMBOLS
By "samples" are meant independent random samples from the extreme-
value distribution.
a4, bi numerical quantities entering into weights of order-
statistics estimator for sample of n and

i=1,2,...n (see table I)

cov (¥,8) or oF,s) convariance of mean and standard deviation in
samples of n from reduced distribution

B( ) mathematical expectation (or mean value) of a quantity
(see, e.g., eq. (6))

By, Ep efficiency or order-statistics estimetor for subgroups
of m observations, or for samples of n (see
table ITI(b))

E(s) mean value of standard deviation in samples of n

from reduced distribution

F(x) probebility (cumilative) distribution function of
extreme-value distribution with two parameters,

F(x) = F(x3u,B) = exp [:.e-(x-u)/li,

£(x) density (or freguency) function of extreme-value
distribution F(x), aF(x)/dx (fig. 1)

k number of equal subgroups of size m contained in
sample of n
MSE ( ) mean square error of ( ); equals variance plus square
of bias
m size of\one of k equal subgroups contained in sample
. of n
m' size of remainder subgroup in sample of n that‘is

left after Xk equal subgroups of m are taken;
that i1s, n = km + m'
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sample size (N denotes sample size in Gumbel method)
probability level associated with a predicted value

Cramér-Rao lower bound to variance of umbiased
estimator of parameter  Ep (see Qo)

variance of order-statistics subestimator for sub-
groups of m, or of estimator for sample of n
numerator in Cramér-Rao lower bound; QL'B = Qoln
(see teble ITI(a))
relative efficiency of estimators T, to Tp (greater
MSE (To)

than unity when T; is more efficient),
MSE ()
rank of rth observation (counted from smallest) in

samples of n when arranged in ascending order from
smallest to largest observation

standard deviation of sample of 1n <from reduced
: I n

distribution, %Z (71 - 7)°
=

standard deviation of sample of n from original

= -2
distribution, %Z (%1 - %)
=}

average of subestimators for k egqual-size subgroups,
k

1

DI

subestimator for remainder subgroup (see m*)

order-statistics subestimator for ith of k equal-size
subgroups in samples of n with i=1,2, . . ., k

weights for T and T' in grand estimator for sample:
2l I
Ep = T + t'T"
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X

Y, Yp

Al

Ax,n

mode or location parameter of extreme-value distribution

Gunbel 's original estimator of mode wu for sample

- 7
x - 2 sy
On

of n,

simplified expression used to represent Gumbel's
estimator of mode u, X - E 7s
1€ X

random variable ("unreduced") having extreme-~value
distribution F(x)

the n order statistics in sample of n, that is,
the observations ranked in ascending order

three selected order statistics in Mosteller method
for very large samples of n (0O<A<p<v<1l)

sample mean in sample from original ("unreduced")
distribution

reduced variate

scale parameter of extreme-value distribution F(x)

.Gumbel's original estimator of B for sample

of n, syfo,

simplified expression used to represent Gumbel's

%6 o

estimator of B, = 5x

Euler's constant, 0.5772156649

half-width of 68- and 95-percent confidence intervals
when modified by probability factor > l.l’-l-lBPB and
3.06’(BPB, respectively

half-width of 68-percent confidence interval in method
of order statistics (table IX)

half-width of. 68-percent confidence interval in Gumbel
method, 1.141B

first moment or mathematical expectation of random
variable x; E(x)
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variance of reduced distribution, o 2

Ho y
tp 100P-percent point of extreme-value distribution F(x),

u + Byp :
EC— simplified expression used to represent Gumbel estimator

of E'P

o=(s) variance of standard deviation in samples of n from

reduced distribution (table VIII)
crx2 5 cry2 population variance of x and y
o(x) plotting position of rth observation ranked from

r

smallest, T

o(y) cumulative distribution function of reduced extreme-

value distribution, exp (_e-Y)

STATTISTTICAL THEORY

Extreme-Value Distribution and Meaning of Parameters

The method of analysis presented herein is based upon the assump-
tion that the observed maximms to be analyzed are independent observa-
tions from a statistical distribution of the form

F(x) = F(x;u,B) = exp [—e“("'u)/ﬂ (1)

This is the cumulative (or ogive) form of the distribution, which
expresses the chance that an observed extreme value (gust load, for
example) will not exceed x 1in value. The more familiar concept of
the frequency or density function f(x) = F'(x) for this distribution
may be obtained by differentiation but is rather cumbersome (see appen-
dix A) and is not needed for present purposes. The general shape of
the density function f£(x) is shown in figure 1. The meaning of the
various quantities indicated is explained below. A more detailed graph
for the case where the peremeters are u =0 and B =1 (the "reduced"
extreme-value distribution) is plotted in figure 2.
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Distribution (1) has been studied extensively by Gumbel (refs. 3
to 5), among others, and is known as the asymptotic distribution of
largest values. It will be referred to briefly as the extreme-value
distribution. The significance of the term "asymptotic" is as follows:
If the underlying distribution of all (not merely the largest) gust
loads (e.g., effective gust velocity and normal acceleration) is con-
sidered, then the largest values in repeated large samples from this
distribution have a distribution of their own which, as the sample size
becomes larger and larger, approaches closer and closer (in a certain
gsense) to a limiting distribution. This limiting distribution is,
according to evidence presented in reference 6, of the form of equa-
tion (1) , with l/B replacing the parameter o used in the reference.

The parameters of the extreme-value distribution are depicted in
figure 1. The quantity u is the mode or highest point of the (fre-
quency) distribution. The quantity B 1is a scale parameter, analogous
to the standard deviation o 1in the case of the normal distribution.

Tn fact, B equals \]g/:r (about 3/4) times the standard déviation of
the extreme-value distribution.

Although the two parameters u and B completely specify the dis-
tribution, it is desirable to introduce another quantity £ = u + By
which is a linear combination of the parameters u and B (and there-
fore, since known values will be assigned to y, itself a pa.rame‘ter)2
and makes it possible to estimate u and B simultaneously, rather
than in terms of two separate problems. Thus if £ can be estimated
as a + by with a and b known, then the values u=a and B =D
can be read off at once.

The parameter & has another highly important meaning. In fig-
ure 1 the area P under the distribution to the left of the ordinate
erected at & represents the probabllity that a value larger than ¢§
will not occur. If & is very large, then P very nearly equals the
whole area, unity, which means an observation is almost certain not to
exceed €; in other words, a larger value of £ will occur only very
rarely. Thus if P = 0.99, then the corresponding value of & has a
chance of only 0.0l of being exceeded. To denote this dependence of ¢
upon the probability P a subscript is used: §P. This parameter is

2mat is, the transformed parameters (&,B'), obtained from the
original perameters (u,B) by the linear tramsformation & = u + By,
B' = B, are of concern. Attention will henceforth be given only to the
Tirst parameter &, disregarding the second parameter B' of the trans-
formed pair (g,s'i. Whenever it should become necessary to refer
to B',)however, the prime will be dropped for simplicity. (See foot-
note 7.
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called a percentage point or the 10OP-percent point of the extreme-value
distribution. If Ep can be estimated for different probebllity levels

such as P = 0.90, 0.95, 0.99, and so forth, then these values are pre-
cisely the predictions desired for, say, gust-load accelerations that
will be exceeded (on the average) only 10, 5, 1, and so forth, respec-
tively, times in 100.

The explicit relationship between gP and P can be determined

by means of formula (1) for the extreme-value distribution. If x is
put equal to §P, then P, the probability of not exceeding this value,

is simply F(E,P). Thus

o p6) - e O L e () ‘ )

since Ep = u + By. Hence, for a given (usually large) probability P,
the corresponding Ep is obtained by finding y from relation (2) and

then writing

Ep = u+ Byp (3)

where the subscript P has been added to y to denote dependence on P.
Comparison of the right members of equetions (1) and (2) shows that the
quantity y Dbears the following simple relation to the corresponding
varisble x in equation (1): ) ’

y=x—u (’-l-)

or

u+ By ()

»
n

Also, if in equation (1) one sets u =0 and B =1, them x has the
game distribution as that given by the right-hand side of -equation (2).
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In other words, y as defined by equation (&) or (5) has an extreme-
value distribution whose parameters have the extremely simple values
u=0 and B =1. Thus y is called the reduced variated and is
perfectly analogous to the standardized variate + = (x - p) / o of nor-
mal distribution theory. The distribution of y in equation (2) 5
called the reduced distribution, has been tabulated in table 2 of ref-
erence T, which also contains a table of the inverse function as well
as a number of other’ tables related to the application of extreme-
value theory.

From the above discussion it is evident that the solutions of both
the problems of estimation and prediction are embodied in the one quan-
tity gP =u+ ByP. BEstimation of this quantity will be one of the main

objectives of the remainder of this report.

Determination of Method of Estimation

‘To avoid confusion, a distinction is made between a function'of
sample variables Xy, X,, . . ., X,, such as the sample mean

g(xl, Koy o = xn) =X = (xl+ I+ . . . +xn)ln, and the numerical
values &, = g(xlo, x2°, < e ey 0) assumed by the function when the

actual values of the observatioms xX; = xio are substituted into the

function. If the function is used to estimate a parameter, it will be
called an estimator of the parameter; the particular numerical value
assumed in a given case will be called an estimate.

In searching for estimators the first step is to seek what are
known as sufficient statistics. A definition of this concept may be
found in any advanced text on statistical theory, for example, ref.-
erence 8 (vol. II, p. 81); but the feature of importance here is that,
given a set of Joint sufficient statistics, that is, certain functions
of the sample observations, it is often possible to deduce from them
an estimator with certain desirable properties, provided that the num-
ber of such functions does not depend upon sample size. If it turns
out that the only set of sufficient statistics is the trivial set con-

sisting of the n fumctioms +t3(x;, - - -, X)) =%, i=1, ..., mn,
that is, the mn sample observations themselves, then obviously this

furnishes no guide whatever for constructing functions of the x's
which are optimm estimators.

3The variate x 1is sometimes referred to as the original or
"unreduced" variate.
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Investigation reveals that, unfortunately, joint -sufficient sta-
tistics do not exist for the two parameters of the extreme-value dis-
tribution. A proof of this fact (which was conjectured by Kimball,
ref. 1, p. 299) has been discovered by Mr. I. Richard Savage of the
Statistical Engineering ILaboratory of the National Bureau of Standards
and is presented in appendix A.

It mey be noted that Kimball (ref. 1) has studied a broader concept
called "set of statistical estimation functions" whereby the estimators
of the parameters are given, not by explicit formulas involving only the
sample values, but implicitly as the solutions of a set of simultaneous
equations, for example, the classical maximm-likelihood equations.
Unfortunately, such estimators do not seem to lend themselves to the
procedure referred to above for constructing optimum estimators, and
there seems to be no analytical means of accurately evaluating the
important characteristics of bias and efficiency, defined below, for
such estimators in the case of finite samples. (Although these esti-
mators may be asymptotically optimm, i.e., for infinitely large samples »
this need not be the case for samples of finite size.)

A second method of approach to. the problem of estimation 1s the
classical one known as the method of moments. In the case of the
extreme-value population this method is as follows:

The first two moments of the extreme-value population (1) are

b = E(x) = u+ BE(y) 4 (6)

- 5fx - 2] ® - p2efy - 5x)]° - 7

where y hes the reduced extreme-value distribution (2) E denotes

mathematical expectation, and o2 is the variance, the second.moment
about the mean. Using the moments of the reduced distribution (Bee >
e.g., ref. 8, vol. I, p. 221),

E(y) = 13" = 7 = 0.577216 (Buler's constant) (8)
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there are obtained

b =u+ 78

e (10)
o =—’£—B '
* e

relations which express the population moments in terms of the popula-
tion parameters. Therefore, if one had good estimators of the population
moments, the parameters could readily be found. This fact constitutes
the essence of the method of moments. It consists in treating the sample
as an adequate representation of the population, replacing the popula-
tion moments in the expressions which relate them to the parameters by
the corresponding sample moments, for example, My Dby the sample

mean X, and 0y by the sample standard deviation

S DN (1)

This gives x =u+ yp and 8, = (‘.nt Ng)a, which yield the moment esti-

mators of the parasmeters:

For B8, ﬁ:(vg_/n)sx

(12)

"~
For u, u

x - 7(\’8_/" Sx

-

These are essentially the estimators which form the basis of Gumbel's
method (ref. 5, lect. 3, eq. (3.29), with u, = & emnd 1/a, = f).*

h‘The actual estimators used in the Gumbel method are slightly more
complicated (ref. 5, lect. 3, eq. (3.39)), but the difference is not
important at this point. (See appendix B.)




12 NACA TN 3053

This method is justified by the fact that under general conditions the
estimator functions @ = d(xy, Xp, - - x)) and B = BxLs %25 « - «» xn)

in equations (12) approach (in a certain sense) the values of the corre-
sponding parameters u and B as the sample size becomes infinite.

This method has apparently given satisfactory results in practice.
It is, however, subject to an important limitation. In studying esti-
mators it is highly desirable to know samething about their probability
distributions - if not the exact density functions, then at least their
means and variances. The mean value (mathematical e.xpecta.tion) of an
estimator indicates whether on the average the estimates given by it are
too high or too low relative to the acturl value of the parameter esti-
mated - in other words, whether there is any bias in using the estimator.
Similarly, the variance indicates how much the estimates scatter among
themselves and is the basis for constructing a measure of efficiency
which makes it possible to compare the performances of different esti-
mators. A more useful concept for some purposes than variance is mean
square error which measures how far the estimates deviate, on the average,
not from their own mean but from the quantity - the parameter - which
they are supposed to measure. There is a simple relationship between
variance and mean square error, namely,

Mean square error = Variance + (Bias)Z (13)

Thus, for unbiased estimators, variance and mean square error are iden-
tical, and for brevity the term "variance” will be used in such cases.
But it should be remembered that the concept in view is actually the
mean square error. This becomes éspecially important later when biased
estimators are discussed (appendix B) and variance and mean square error
are no longer identical.

If one tries to determine the mean (or expected) values of the
estimators u and P in equations (12), it is found that statistically
these functions are quite complicated, leading to very difficult multiple
integrals which apparently can be evaluated accurately only by large-scale
numerical integration.”? This difficulty evidently persists if one is
interested in the parameter Ep = u+ Byp instead of in u or B

separately.

> Shorter methods of limited accuracy are possible and have been
used in this report for comparison purposes. (See the section
"Theoretical Comparison” and appendix B.)
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Order-Statistics Approach for Small Samples

Apparently the only method of estlmation which avoids the dif-
Ticulty of complicated calculations is the method of order statistics.
If the values in a sample of n observations are arranged in,
say, increasing order of size and denoted by X5 X5 o - o5 Xy

X)) SX <. - . £X,, then these values x; are called order statistics.

The smallest is called the first order statistic; the middle one (if n
is odd), the median; the one which is one-fourth the wvay up from the
bottom, the first quartile; and so forth. (If there are several equal
ones, then suitable modifications are made in the definitions). There
is an extensive literature on this subject, chief among which is the
comprehensive survey in reference 9.

Order statistics provide rapid and practical methods of analyzing
data. The range X, - 1 1is & very common illustration from quality

control. Tt is simply the difference of two order statistics, the
largest and smallest, and its properties have been extensively studied
for samples from the normal distribution. The range has been found to
yvield estimates of the standard deviation of the population that often
compare very favorably with the theoretically best obtainable. More
general linear functions, Cix) + CoXo + . . . + Cpx,, which give weight

to every sample value, have also been studied (ref. 10), and values of
the coefficients have been found which make it possible to estimate very
simply and remarkably well certain quantities which previously were
obtained only by more complicated calculstions.

This procedure will be carried over and extended to the case of
samples from the extreme-value distribution (1). The method will in
meny respects follow the general approach used in reference 10 for
several other distributions. The aim is to determine the weights Wi,

i=1,2, .. ., n, for a1l the n order statistics in a sample of
size n so that the linear estimator

n .
L = Z WiXq (lll')
i=1

has the properties desired, namely:

(1) The mathematical expectation equals the parameter to be esti-
mated; that is, the estimstor is unbiased:

E(L) = & (15)
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(2) The mean square error (MSE), which in this case is the same as
the variance, is as small as possible, consistent with condition (1):

E[L - E(1)] ®

A minimm (16)

MSE (L) = o2(L)

An estimator I which satisfies these two conditions will be
denoted by %p, & notation siggested by condition (1).

Condition (2) is equivalent to saying that the estimator @P 1s

as efficient as possible under the given conditions. This concept will
be discussed below.

The mathematical formulation of this minimum-veriasnce problem is
developed in appendix C, and the solutions (the weights) are shown in
table I for n=2 to n =6. The case for n greater than 6 is dis-
cussed in the next section. For each given value of n, n welghts
Wiy Woy - « -, W, are determined that depend on the quantity yp that

occurs in the parameter _E,P =u+ ByP to be estimated. The weights Wy
are each of the following form:

Wy = a; + biyp, i=1,2,...,n (17)

Substituting these weights for given n into equation (16) actually
gives the minimum value Q, that the variance can attain under the

above conditions, and this value depends upon Yp quadratically:

Vatn = O = (Awp® + Buyvp + Cp) 87 (18)

Table I gives the values ay, ’bi, A,, B,, and C, which have been

found by exact computation methods as indicated in appendix C and
table II. The quantities Vp;, = Q are shown in table III(a).

As the sample size increases, the estimation is expected to improve
and the variance, to diminish. In order to have a convenient standard
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of comparison, in the case of unbiased estimators ,6 all variances are
scaled by dividing into a theoretically specified variance Qpp, kmown

as the "Cramér-Rao lower bound" (ref. 11, p. 480, eq. (32.3.3a), T which
is less than or at most equal to the variance of any (unbiased) estimator

of the parameter in quest:l.on.8 The result is then an absolute number
between O and 1 which, when expressed as a percentage, is called the
efficiency of the estinator for samples of n:

.

Efficiency (L) = E (L) = QLBlQn (19)

The quantities E,, which evidently depend upon ¥Yp, and therefore

upon P, are given for n = 2 to 6 for selected values of the proba-
bility P in table ITI(b). Table III(a) contains the numerical values
of the wvariances Qn and the lower bound QLB in terms of the param-

eter 52 The expression for Q;p bhas been implicitly given in refer-

ence 2, page 113, and is J_ndlca.ted in the first footnote to table ITI(a)
of this report.

6For biased estimators, see appendix B.

7Th_’Ls Cramér-Reo bound is given for the case where the distribution
has only one parameter to be estimsted. For the extreme—va.lue distribu-
tion with the +two pa.rameters (g B), B can be regarded as a "nuisance
parameter” and a "Cramér-Rao bou:nd" thus obtained for £, the expression
for which will involve B (see first footnote to table III(a)). This pro-
cedure is based on the "method of nuisance parameters" discussed in ref-
erence 12. (See also footnote 2 in text.)

’8There may or may not exist estimators whose variances reach the
lower limit Qyp. If (as may happen) there exists a Q' > Qp such

that the variance of every estimator is 2Q° (a.nd, of course, >QLB) 5
then Q' may be substituted for Q‘LB in the numerator of the expres-

sion for efficiency (19) without the fraction exceeding 1. The inves-
tigation of the existence of Q' 1is too complex a matter for the pur-
poses of this report. However, the only effect of using a lower

bound Qpp which is too low is to understate the efficiency, so that

the results are on the safe, conservative side.
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Two points should be noted ebout the choice of probability levels
shown in teble III. The value P = 0.36788 = 1/e, which corresponds
to yp = 0, is important because it gives the mode, one of the desired

parameters of the distribution. This is evident from the fact that the
parameter being estimated 1s £p = u + ByP = u, the mode, for yp = 0.

Similarly, the limiting value P = 1 corresponds to the scale param-
eter PB. This may be seen as follows: If P approaches 1, the values
of gP and ¥p both become indefinitely large, but their ratio

tEp' = Ep /yP = (u /yP) + B may be considered to be a new paremeter which

approa.ches‘ B, since the mode u remains fixed and finite (as does
also B). Hence B may be estimated by first estimating Ep' for

arbitrary P and then letting P approach 1.

Now from equations (14) and (17), the linear estimator I = EP ‘is
of the form !

Ep = £1 + ¥pfp (20)

where fl ‘and f2 are functions of the sample values which do not
involve yp. By the preceding remark, the parameter B can then be
estimated by writing down the corresponding estimator of gP' 5

g
2 12 _ 71

as the corresponding estimator of 8.

In other words, an estimator ’g‘B of B may be obtained by simply
teking the coefficient of yP in EP when written in the form of

equation (20). Similarly, the variance of EB is the coefficient
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of yP2 in the variance of EP' This may readily be seen as follows.
From equation (20),

02(§P)- £,) + 2yp cov (£1,£,) + 20 (f)

=A+ByP+CyP2

where A, B, and C are quantities which do not involve Yp (though

they may involve B, in general); thus, as P approaches 1 and ¥p
increases without limit,

02(§Px) =i2 (g )=..iﬂ*E ;—P+C-——>C

the coefficient of y,2 in 02( P) From this it follows also that the

efficiency of the estimator §B, being a ratio of variances, is simply

the ratio of the coefficients of yrz, the other terms being disregarded.

These facts gpplied to the estimator EP meke it possible to avoid

a separate treatment for the two parameters u and B. Their estimators
are each represented by a single line in a table (such as table ITI)
showing values for various probability levels: P = 0.36788 (or yp = 0)

glves u; P=1 (or yp = w) gives 8.

The concepts of variance and efficlency have also a more concrete,
practical significance. The lower bound to the variance Qrp has the

form QLB = Qo/n, Where QO is a quadratic function of ¥p but is

independent of sample size n. For itwo samples of sizes n' and n",
the variances Qp' and Q" are in the ratio

g’ "

QI.BH 1

B

m}




18 NACA TN 3053

thet is, inversely proportional to sample size. Similarly, if there
were two estimators for the same sample size, the ratio of their vari-
ances could be formed snd thought of as representing a ratio (inverse) “
of (hypothetical) sample sizes. Thus, if, for a sample of 20, the
variance Q' of one estimator were one-half the variance Q" of an
alternative estimator, then the first estimator would require a sample
of only 10 to give as much information as could be obtained with the
gecond from a sample of 20. This saving of half the number of observa-
tions is expressed by saying that the first estimator is twice as effi-
cient as the second. In general, a saving of the fraction p of the
observations makes one estimator l/(l - p) times as efficient as a
second.

The efficiencies of the estimators EP in table ITTI are more con-

veniently compared in graphicael form, as in figure 3. The heavy hori-

zontal line at the top indicates perfect or 100-percent efficiency, and

the rising curves as n increases show how closely the estimator is
approaching- the standard of perfection. The most outstanding fact is

that, in marked contrast with a theoretical, perfect estimator, the N
efficiency of the actual estimator %p depends upon the probability P,

being the largest for the middle ranges 0.40 to 0.60 and dropping con-
siderably at the ends near O and 1. Since analysis of extreme (largest)
data is concermed chiefly with the larger magnitudes associated with
very small probebilities of occurring or of being exceeded, interest
will be limited here to the range above P = 0.90. For n =6 the
efficiency exceeds the 80-percent level for all values of P 1in this
range that are apt to occur in practice (i.e., P < 0.999). In view of
the satisfactory values of efficiency, further calculation for =n > 6
did not appear warranted at this time, particularly since it became
apparent that the labor of computation would increase out of all pro-
portion to the rapidly diminishing improvement in efficiency.

Of course, most samples of observations are larger than the trivial
size of 6, and the question arises how to handle the larger samples.
This is treated in the next sectiom.

Extension to Larger Samples

The key to handling samples with more than six observations is to
treat them as sets or subgroups of samples of 6 (or, if mnecessary, 5).
If a sample size is not an exact multiple of 6 or of 5, then the sample
may be treated as consisting either of subgroups of 6 with an odd group
remaining having less than 6 items, or of subgroups of 5 with a remaining
group of 6. The simpler case where n is an exact multiple of 5 or 6 "
will be dealt with first.
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Case T —'Sgggie gsize an exact multiple of 5 or 6.- Suppose, in

general, n = km, where m is the size of the subgroup, which need not
be 6, and k is the number of subgroups in the sample. If the sample
is so divided into subgroups that the observations in one subgroup may
be considered to be statistically independent of those in any other
subgroup, then it is legitimate to treat the sample as consisting

of k independent subsamples, each of size m.

One way of obtaining independent groups is by use of random numbers.
This, however, will lose valuable information embodied in the order in
which the data were actually observed. If the data are truly random,
so that, for example, there are no seasonal effects, then this implies
that subgroups formed in the order in which the date are observed -
the first m values observed put into the first group, the next m
into the second, and so forth - should be independent. This assump-
tion, of course, underlies the entire method of estimation described in
this report, and it will be adopted in the procedures.

From each subgroup form the "subestimator”

m
T; = ;i;-ijj, i=1,2, ...,k (21)

vhere the weights wy, Woy o - -, W, arTe those taken from table I for

gsample size m and are the same for each subgroup of m values (but,
of course, are different for different sizes m). These k subesti-
mators T; are then combined by simple averaging to form the grand

sample estimator:
k
E T; (22)
i=1

The variance of this estimator is simply

T=

Lol

ver (T) = = (23)
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since the variance is being taken of a mean of k independent quan-
tities Ty, each of which has the same varia.nce,9 var (Ti) = Qps
Qg denotes the variance tabulated in table III(a) for m =2, 3, k4,

5, and 6.

The efficiency of T 1s, since n = km and the T;'s, and there-
fore T, are unbilased,

E = = = = Em (2)"')

where Qrp = Q,[n = Q [km, and Q . is independent of n. Thus one has

the important fact thet, if a sample is broken into equal-size subgroups,
the efficiency of the order-statistics estimator depends only upon the
size m of the subgroup (and, of course, .on P).

Since, according to teble IIT (»), efficiency increases with sample
(or subgroup) size, it follows that when there is a choice, a sample
should be broken into subgroups as large as possible for best efficiency,
that 1s, into subgroups of 6. If this is not possible, but if the sample
size n 1is an exact miltiple of 5, then subgroups of 5 may be used with
not much loss in efficiency. The last two columns in table ITI(b) show
that the loss is 2.4 percent (0.8647 ~ 0.8404k) at P = 0.95 and rises
to a maximm of 3.8 percent for the limiting value P = 1.

Case IT - Sample size not an exact multiple of 5 or 6.- In most
cases, of course, the sample size will have a remainder when divided
by both 5 and 6. There is then a great variety of choices as to how
to partition n into subgroups of 6 and 5 and perhaps other sizes.
Many of these possibilities have been examined, the aim being to
establish as simple rules as possible without too great a loss in effi-
ciency. Fortunately, most of the methods of partitioning a sample of
given size n do not lead to greatly different efficiencies. Thus the
following rules can be laid down for n 2 7 (n< 6 does not involve

breaking into subgroups):

() n =7 up to large values: (1) Use the partition n = 6k + m'
if m'=2, 3, 4, 5. If m' =1, use n =5k, +m". If also m" =1,

so that n = 31, 61, 91, and so forth, that is, a multiple of 30 plus 1,

9These veriances are equal because they depend only upon m, P,
and B, which are constant for all the subgroups of the same sample.
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then (2) write n =30k + 1 = (30k - 5) + 6 = K6k-l)x§]+6;that

is, split the sample into 6k - 1 subgroups of 5 and a remainder sub-
group of 6.

(b) n extremely large: If the sample size is of the order of
several hundred or more, so that the number of subgroups is of the order
of 50 or 100, then the amount of computation becomes increasingly labo-
rious. For such very large samples of extremes, which are rather rare,
a short-cut method is avallable which 1s explained in appendix D. While
its efficiency is substantially less than that of the longer method pre-
sented here, it 1s nevertheless of practical value inasmuch as the loss
in. efficiency, which in practical terms means an effective loss in num-
ber of observations, is not very important when a very extensive amount
of data heppens to be available.

The variance and efficiency of an estimator for most sample sizes
(rule (a)) can be discussed readily in general terms. Assume that
n = km + m' represents the separation of the sample into two parts,
one consisting of k equal subgroups of size m =5 or 6 and the other
consisting of the remainder subgroup of size m' < m except for the
exceptional case where m =5 and m' =6 (case II, rule (a)(2)).
The average, T, is formed from the first part as described under case I.
Then a subestimator T' is formed from the remminfer subgroup of
m' values using the weights w;' for samples of size m':

m' -
S (5)
i=1

where xi', i=1,2, .. ., m', denotes the m' values in the sub-

group. TFinally a weighted average of T and T' is formed, and ‘this
is the grand sample estimator §P:

B, = T + ¢'T (26)
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where the multipliers arelO

t=km/n

(27)
t'=m'/n=1-1

Since all the subgroups are independent, so are T eand T'; whence

var (EP) = %? Qy + (t')2Qm|

since the variance of the mean, EL is 4% %m'

From the above discussion it is evident that, once the partitioning
of sample size n into n =km+ m' 1is determined, the variance and
efficiency may be obtained except (in the case of the variance) for a

factor 32 which must be estimated from the data. Table IV lists for
convenience the efficiencies at two probability levels, P = 0.99 and
the limiting value P =1, for most of the sample sizes that may occur
in practice with gust-load data, provided the sample is split up
according to the gbove rules. The levels P =0.99 and P =1 <fur-
nish a convenient basis for comparing the efficiencies of two different
partitions of the sample size. At this end of the probability scale
the difference between the two efficiencies decreases monotonically

as P decreases. Thus, if the difference in efficiencies is 3 percent
at P = 0.99 and I percent at P = 1, then the difference is between
3 and 4 percent at P = 0.995, say, and at P = 0.95 and under is apt
to be substantially below 3 percent, a difference negligible for prac-
tical purposes. The partitions shown in table IV are those recommended

100ther maltipliers are possible. In particular, there 1s an
optimum set of multipliers which produces an unbiased estimator EP
with slightly smaller variance, and hence slightly greater efficiency.
The optimum multipliers are, however, less simple than the proportional
oneg - for example, they are not constants but depend on P - and the
gain in efficiency is not great. This was shown by a number of trials
end by the fact that, in any event, the efficiency cannot exceed that

for the larger subgroup size E; (or Em' if m' > no and does not

differ much from it if the total sample size =n dis at all sizable,
say >20.
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by rule (a) above. In certain cases the efficiencies of alternative
partitions are shown in the footnotes to table IV for use in case the
extra few percentage points in efficiency are considered to be worth
a little loss of simplicity in computation. .

There are some useful a priori guides for Jjudging the efficiency
in any given case even beyond the limit n = 40 of table IV. Thus,
if n=Xm+ m', it is clear that the efficiency cannot exceed that
for the subgroup sizes m and m' but must lie somewhere between the
efficiencies corresponding to these two sample sizes. If m and m'
are not far. apart, then, regardless of the number of subgroups Kk,
the efficlency is determined between narrow limits. Again, if k is
substantial, say near 10 or more, then the efficiency is practically
that for the larger sample size m. Of course the maximum efficiency
obtainable by the procedure outlined here is for case I when the sample
size is an exact multiple of 6. For P = 0.99 the efficiency in such
a case is 83.2, and foar P =1 it is 76.8. If any given partition
results in efficiencies within, say, 2 or 3 percent of these values,
then there is nothing significant to be gained by using any other par-
tition, unless it is such as to simplify the computation.

SUMMARY OF FROCEDURES

The method of analysis will now be summarized for ease of reference.
The use of the method has been considerably simplified by the construc-
tion of specially designed work sheets. A completely filled out pair
(work sheets 1 and.2) will be found immediately preceding the tables at
the end of this report. With the aid of such work sheets about 2 hours
should be sufficlent for all the calculations for a moderate-size sample,
such as the sample of 23 observations analyzed below, and it has been
found that this period is even sufficlient to, include the graphical anal-
ysis also presented.

The materials needed for spplication of the method, besides work
sheets 1 and 2 and a sheet of extreme probability paper, are, in the
order in which needed:

(1) Table _IV, showing efflciencies for various methods of splitting
sample into subgroups

(2) Table I, giving the welghts a; and by

(3) Table IIT, furnishing the quantities Q_ , Q,, %, Q

za.nd.Q_6
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The assumptions upon which the method is based are that the data in

the given sample (arranged in the order in which observedll) may be A
treated as independent random observations all from the same population

F(x) = exp Ee_(x"u)/ﬂ

(in cumilative form), wilth constant unknown parameters u and B to
be estimated.

For concreteness, the rules below refer to an actual example, worked
out in work sheets 1 and 2 and figure 4, consisting of the 23 maximum
positive acceleration increments observed ‘in 23 flights of an airplane
and identified as "NACA-Langley-Sample III," which are listed in the
column headed "Observed extremes, /MAn" in work sheet 1. These data are
assumed to be given in the order of observation, so that under the above
assumptions this arrangement may be considered to be a random one.

Each rule (except rules (2) and (7), which are subdivided) consists
of a single paragraph and this is followed by a detailed explanation of
its use, inserted for convenience of the user. This makes the list
unavoidably lengthy, but the rules themselves are brief and simple to

apply.

Before starting the calculations, it is desirable to plot the data
on special probability paper according to the directions in rule (7)(a)
under "Graphical analysis" in order to obtain a crude judgment of how
well the data fit the assumed distribution. In rearranging the data in
order of size, however, care should be taken not to lose the record of
the original order in which the data were taken because randommess will

then have to be reintroduced.

As a result of considerable experimentation it is recommended that
all computations be carried to exactly the number of places shown for
each item in the two work sheets.

Determination of estimators: The rules for determining the esti-
mators, using work sheet 1, are as follows:

(1) Enter the observations in the second column of work sheet 1
in the order in which given. The first column is for identification

purposes.

117 the observations are not availsble in their original order,
it will first be necessary to randomize them by use of a table of
random numbers.
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(2) Determine the partition of the sample size (if 7 or more, but not
extremely large) and split the sample into subgroups as large as possible
subject to the following rules (a), (b), or (c). If n is extremely
large, say several hundred or more, see appendix D.

(a) If n is an exact miltiple of 5 or 6, write n=kXx 5 or
n =k x 6; if both, use n = k x 6.

(b) If n 1is not an exact multiple of 5 or 6, write n = k X 6 + m'
(or n=kx5+m'), where 1 <m' <6, unless n = 31, 61, and so forth,
that is, 1 plus a multiple of 30.

(¢) If n is of the form 30k + 1, write it as =n = (30k - 5) + 6
= (6k - 1)5 + 6; that is, split n wup into 6k - 1 subgroups of 5 and
a remainder subgroup of 6.

Once k, m, and m' are determined the blanks in section I of
work sheet 1 can be filled in. At the same time, in work sheet 2, the
numerical values of m and m' should be entered as subscripts in the
headings "Q " and "Q " for columms 4 and 5, respectively. In the worked

example, n = 23 =3x 6 +5 (rule (b)), so the data are split into three
main subgroups of 6 and a remainder subgroup of 5.

(3) Find estimators for the parameters Ep and u by filling in

the blenks and following the directions indicated in work sheet 1,
gections ITIA, TIB, and IIT.

In sectiéon ITA, obtain the weights a; and b; from table I for
n = m, the size of the main subgroups. Mark off the subgroups by any

convenient means ,12 arrange the observations in increasing order within
each subgroup, and enter them horizontally opposite the proper subgroup
m
number in section ITA. Obtain the two product sums E a;x; and
i=1

m
E bixi as indicated in the two right-hand columns and sum all columns

i=1

as shown. The two product sums evaluated for the line labeled "Sum" will
serve as & check. Form the average T by dividing by the number k of

main subgroups.

127t was found convenient here to determine the subgroup size m
before entering the data in the extreme left columns, so that the sub-
groups could be plainly indicated by means of a space after every
mth observation.
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The work in section IIB 1is analogous, except that the weights ai'
and by' are the a; and b; shown in table I for n = m', the size

of the remalnder subgroup; also, since there 1s only one subgroup,
averaging 1s unnecessary.

Section ITII combines the (sub) estimators T and T' with the
proportionality coefficients + and +t', determined in section I, to
produce the final over-all sample estimator ,

’g‘P = tT + t"T' = 0.92946 + 0.16TThyp

upon collecting the coefficients of ¥p and the constant terms. The

estimates of the parameters uw and B are read off at once from the
coefficients of §P and entered. This constitutes the fitting of an

extreme-value distribution to the given data.
Predicted values, confidence band, efficiency, and plotting positions:

The predicted values, confidence band, efficiency, and plotting positions
are determined as follows, using work sheet 2:

(4) Compute the values of §P in column 3 for the values of P
and Yp shown in colums 1 and 2. These values constitute the set of
predictions for the respective probability levels.

Additional probability levels may be inserted between those shown, if
desired. The value of yp = -log, (—-loge P) is found most conveniently

from table 2 of reference T.

(5) The confidence-band half-widths (68-percent control curves) are
computed from the standard deviations as indicated.

The numericel values of the variances Qm and an in columns 4
and 5 are found under these same headings in table ITI(a) and entered

as shown. The values of t2/k and (t')2 are entered above these values,
as indicated, in order to facilitate computation of the variances of the
over-all estimator

2
var (8p) = - O + (61 0
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in columm 6. Column 7 gives the standard deviation of the estimator EP‘

It is most easily computed by taking the square root of the coefficient
of B2 in colum 6 and multiplying by the value p found in section ITI

"N

of work sheet 1. Thus o(gP) for P = 0.50 is \l0.0605l times the

value B = 0.1677: (written at the top of columm 7 for convenience),
giving the value 0.0413 shown.

The standard devistion of the estimator measures the reliability,
that is, the extent to which repeated application of the procedure to
repeated samples taken under the same conditions would give values
clustering more or less closely about the unknown parameter value. For
example, for a fixed probability P, about 68 percent of the time (when
the assumptions are satisfied) the computed interval EP plus or

minus one standard deviation will conbtain the true uhknown parameter
gP =1u+ ﬁyP. For two standard deviations the percentage rises to 95.1'5

Two curved lines, one joining the left-hand end points of these intervals
end one Joining the right-hand end points, are called control curves

(see rule (7) for graphical analysis, below) and these two curves define
a confidence band consisting of the areas between them. The interval of
values of the abscissa x = gP included between the control curves,

when P 1is given a specific value, is called a confidence interval. The
standard deviation in columm 7 of work sheet 2 is thus the half-width of
a 68-percent confidence band (or interval). If, for example, levels of
95 percent are desired, the values can be readily obtained by adding
another colum consisting of twice the entries in columm 7.

(6) Efficiency is computed as follows: The values of Q, for
the indicated values of P are taken from the column headed Qo in

table ITI(a), divided by the given sample size n, and entered in the
Qp colum, 8, of work sheet 2. The efficiency is obtained by dividing

this by the corresponding entry in columm 6, canceling the Bz (which
was one reason for carrying it along separateLy), and finally entering
the result in columm 9.

L5 mhese percentages are only approximate since they assume gP to

be normally distributed. As indicated in appendix E, this assumption is
sufficiently correct for practical purposes for samples of the order

of 100 or more. This may, of course, not be the case for much smaller
samples. However, normality assumptions of this kind must often be made
in practice in the absence of large-scale investigations to establish
more precise distributions. Results obtained in this manner have often
been found to be satisfactory.
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(7) Graphical analysis consists of plotting the data-on suitably
ruled paper, drewing the estimated straight line, drawing in the con-
trol curves, and seeing how well the data fall within them. The method
is essentially due to Gumbel (cf. ref. 13).

(a) In the section of work sheet 2 called "Plotting positions,"
arrange all n observations in the sample in a single ascending series
from smallest to largest and enter them opposite the rank numbers r = 1

to n. Compute and enter the plotting positions ¢(x) = Then,

+ 1
on a sheet of extreme probability paperll" such as that used in figures y
z l)' The observation x,. is plotted on

and 5, plot the points ( 5

the uniform scale along the horizontal axis; the fraction is

plotted along the nonuniform vertical scale <p(x) Thege points are
plotted as shown in figure L.

(b) A:fter the points are plotted the estimated line x = u + By,
that is, = 0.9295 + 0.1677y (see rule (3), above), is drawn through
them. ‘I'his is easily done from columns 2 and 3 (work sheet 2), since
column % gives the predicted values of x(— E.P) corresponding to the
values of y (= ¥p) in column 2. An even simpler method is to take two

or three widely separated values P in column 1 together with the corre-
sponding values EP’ plot them on the ¢(x) and x scales, respectively,

and draw the line through them.

(c) The 68-percent control curves are obtained by measuring off hori-
zontally, at each value of P in column 1, the distance U(EP) , taken

from colum 7, to the right and left of the fitted line and then joining
all the right and all the left end points of the intervals so formed,

as in figure 4. The area included between the two control curves is the
68-percent confidence band. If most or all of the plotted points fall
within the band, as in figure 4, then it is concluded that the fit is
satisfactory and furnishes no evidence that any of the basic assumptions
are violated.

(d) The fitted straight line provides the predictions for any desired
Probability level .Y For example, the prediction for P = 0.995, which

lL"Exbreme probebility paper is coordinate paper with one scale (x)
uniformly spaced and the other (y) distorted in such a manner that the

extreme-value distribution exp (-;e"y) will plot as a straight line.
150n the probebility paper (figs. 4 and 5), P is denoted by &(x).
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means a value of acceleration increment which has only 1 chance in 200
of being exceeded, is obtained (in fig. 4) by readirg across to the
solid (fitted) line at P = 0.995 and down to find the value x = 1.82g.
This is sufficiently close to the value 1.81l76 obtained by calculation,
using the value y0.995 =-5.29581. The 68-percent curves give a con-

fidence interval for this value of approximately 1.66 to 1.98. This
means that there is a probability of about two-thirds that such an
‘interval includes the true predicted value gP that is being estimated.

The efficiency associated with this estimate is between 80.3 percent and
82.6 percent (column 9), sufficiently narrow limits for practical purposes.
If a more accurate value for the prediction or measure of efficiency is
desired, it can be readily obtained by inserting a "P = 0.995" line in
the first table on work sheet 2 and performing the computatlions 1ndicated
in columns 2 through 9.

COMPARTSON WITH METHOD IN PRESENT USE

It is of interest to compare the proposed order-statistics method
with the method of moments of Gumbel which has been used up to now in
extreme gust-load computations (ref. 6). The comparison is presented in
two aspects- - theoreticel, involving an empirical attempt to evaluate the

bias and efficiencyl6 of the Gumbel estimator, and practical, showing how
the two methods work out in an actual example.

Theoretical Comparison

Only the general results of the theoretical comparison will be indi-
cated here, the detalls being furnished in appendix B. The comparison
consists in writing down the Gumbel estimator, a function of the observa-
tions involving the sample mean, standard deviation, and the probabllity
factor Yps and then obtaining the bias and the relative efficiency of the

proposed order-statistics estimator to the Gumbel estimator.

Of the two characteristics bias and efficiency, the main interest
at this point is in determining the efficiency of the proposed method,
since that is the important feature whereby possibilities of cost savings,
through taking fewer observations, can arise. Bias is less important for
thils purpose, and its consideration is therefore limited to appendix B.

l6]5'or a theoretical comparison of confidence bands, see gppendix E.
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As shown in appendix B (see the section "Comparison With Simplified

Gumbel Estimator"),l7 relative efficiency involves the first two moments
of the sample mean and sample standard deviation and the covariance of
the mean and standard deviation. Of these, only the first two moments
of the sample mean can be obtained readily by standard procedures, while
& prohibitive amount of numerical integration would be required to
evaluate the remaining three quantities accurately.

Resort was therefore had to a method whereby the theoretical extreme-
value distribution was represented by a large set of suitably constructed
random numbers. By means of these numbers a large number of actual ran-
dom samples were drawn and the results tabulated. This was carried out
mechanically with high-speed IBM equipment. By using 12,000 random num-
bers, 1,200 random samples of 10 were drawn and a single average figure
‘for relative efficiency was computed for each set of 100 samples. All
these computations were made for the single probability level P = 0.95.
Other values of P are considered below.

The results are shown in table V and portrayed in figure 6, For
samples of 10, the efficiency was greater for the proposed order-
statistics estimator in 5 cases out of 12 (relative efficiency R (col-
umn 8) greater than 1) and greater for the present moment estimator in n
T cases out of 12. The average of all 12 relative efficiencies was very
nearly unity. These results suggest that, for samples of 10, the two
methods are equally efficient.

The entire procedure was repeated for samples of 20, obtaining 6
(instead of the previous 12) values for the 6 sets of 100 samples each.
As table V (colum 9) and figure 6 show, the balance now was 5 to 1 in
favor of the proposed method, with the average being 1.11, representing
an 11 percent greater average efficiency for the proposed method.

For samples of 30, there were 4 sets of 100 samples each, and the
results (columm 10) were 3 to 1 in favor of the proposed method. The
average relative efficlency was 1.13, representing a l3-percent gain
in average efficiency. '

l7The present discussion compares the order-statistics estimator

with the Guubel estimator £, =X + ?‘[g(yp - 7)8y- As explained in

appendix B, this estimator is a simplified form of Gumbel's original
estimator and is used when the sample of extremes is large. Appendix B
also considers the original Gumbel estimator, which is a more compli-
cated expression used for small samples, and shows that this estimator
is both more biased and much less efficient than the simplified
estimator. y
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To see the effect of different probability levels on these results,
computations were undertaken for several wvalues of P beyond 0.95. How-
ever, in order to avoid needless calculation, in view of the fact that
only qualitative conclusions are warranted, the above procedure was modi-
fied as follows. The sets of 100 samples were combined for each sample
size, and a single over-all average for relative efficiency was obtained

for the 1,200 samples of 10, for the 600 samples of 20, and for the 400
samples of 30, the computations being carried out for the selected prob-
abilities P = 0.95, 0.99, and the limiting value, unity. The results
are shown in table VI. In addition, theoretical calculationsl8 were made
to obtain the asymptotic relative efficiencies as sample size increases
wlithout limit. These values will be found et the bottom of columm 9 of
table VI.

The above additional results indicate that increasing the prob-
gbility P +tends to increase the efficiency of the proposed method rela-
tive to Gumbel's.

It should be pointed out that these values obtained from the empiri-
cal sampling method are indicative, rather than conclusive, on account
of the random variation inherent in the method, as manifest in the wide
fluctuation in efficiencies shown -in table V for the individual sets of
100 samples. Nevertheless, the above results do give strong indication
for the following statements:

For samples of 10, the proposed order-statistics method is about as
efficient as the method of Gumbel, while for samples of 20 or 30 or more,
the proposed method is more efficient. For P = 0.95 or greater, this
increase in efficiency is about 12 to 15 percent for samples of 20 to 30
and ultimstely rises to 25 to 30 percent for indefinitely large samples.

If, in the comparison presented above, the simplified Gumbel esti-
mator is replaced by the original form of the estimator (see the section
"Comparison With Original Gumbel Estimator" in appendix B), then the
comparison becomes much more favorable to the proposed order-statistics
method and it can be stated that, for samgles of 10, 20, and 30 and

= 0.95 or more, the order-statistics method is up to twice as effi-
cient as the Gumbel method using the original estimator. Moreover,
this 100-percent difference in efficiency between the two methods is
of sufficient magnitude not to be significantly affected by the sampling
errors inherent in the method of evaluation.

leSince these calculations are mainly of theoretical interest, they
have been omitted in order to keep this report from becoming unduly long.
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Comparison Based on a Sample of Actual Observations

A comparison of the two methods based on a sample of actusl obser-
vetions will now be made. The same data already anaslyzed by the order-
statistics method will be used, consisting of the 23 maximum acceleration
increments listed in work sheet 1. For convenlence a stendard form of
work sheet will be used, employed by the Environmental Protection Section
of the Office of the Quartermaster General, Department of the Army
(ref. 14), for applying the method of moments of Gumbel. To avoid con-
fusion with work sheets 1 and 2 discussed previously, these new work
sheets are referred to as table VII, part }()a) and part (b). The items
ere filled in on both parts as directed, except that the factor N/(N - 1)
is ignored in sections I and IV of part (b), since subsequent theoretical
investigation has shown its use to be incorrect; also, the values X0

and xlOO in section IITI and the entire section V are not needed for the
present purposes. The values of qN and §h in section IT are taken
from a teble supplied with the work sheets but omitted here.

Comparison is best shown graphically, as in figure 5. It will be
seen that in this particular case the fitted lines given by the two
methods are not greatly different, the predicted values differing by
amounts varying from 0.03g at the P = 0.95 level (1 chance in 20 of
being exceeded) to nearly 0.10g for P = 0.999 (1 chance in 1,000 of
being exceeded) .

The most striking and significant feature about the comparison in
figure 5 is the nerrowness of the confidence band for the order-statlstics
method compared with thet of the Gumbel method. This is:attributeble
mainly to that fact that in the case of the order-statistlics estimator
the confidence-band width is based on the standard deviation of the esti-
mator, computed by the methods indicated in this report, whereas in the
case of the moment (Gumbel) estimator, the standard deviation, whose
value is not known, is replaced by a standard deviation that can be
readily calculated but which results in an unnecessarily wide confidence
band (for details, see appendix E).

Advantages and Limitatlions of Proposed Method

From the discussion given herein it appears that the proposed order-
statistics method offers the following advantages over the method of
morents now in use:

(a) The proposed method provides for the first time an estimator
known to be unbiassed, whose efficiency can be simply and accurately
evaluated.
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(b) The new estimator is more efficient than a simplified form of
the Gumbel estimator, for samples of gbout 20 or more and P = 0.95
and more. Compared with the original form of the Gumbel estimator, the
new estimator is up to twice as efficient for the same range of values
of P and for samples of 10 or more.

(c) The calculations necessary for the proposed method are simple
and unified, giving simultaneously (1) estimates of both parameters,
(2) the predicted values corresponding to assigned probabilities and the
reliagbility of these values, and (3) estimates of the efficiency of the
method.

(@) The proposed method uses a more exact procedure for obtaining
the reliability of predicted values, and this procedure yields smaller
confidence intervals in many cases. (See appendix E.)

The following two limitations of the proposed method should be kept
in mind:

(a) As is true of any other method of analyzing data, use of the
proposed method is appropriate only when the assumptions upon which it
is based may be considered to be approximately satisfied; namely, all
the observations constitute an independent random sample from the same

population F(x) = exp E—(x—u)/ ﬂ (in cumilative form).

(b) The assumption that the data are to be availeble in the order
in which observed is of some importance. For if the data are first
rearranged, grouped, or processed in any manner, their randommess
must be considered lost. In order to use the proposed method it will
then be necessary to restore randommess by use of a table of random
nunbers to rearrange the data. This is less desireble and the original
order should therefore be preserved if possible.

This necesslty of avoiding preliminary processing imposes a dis-
adventage on the proposed method, as compared with the Gumbel method of
moments, when the sample is very large (several hundred or more, say) .
In the latter method the data may be grouped, simplifying the computa-
tions. The method of order statistics, on the other hand, is not appli-
cable with grouped data -~ each observation must be trested on an indi-
vidual basis - and hence is not suitable for occasional enormous samples,
as is the Gumbel method. However, for such masses of data an even
simpler method, described in appendix D, is available.

The increased amount of information is provided by the new method at
some loss in simplicity of calculation as compared with the Gumbel method.
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CONCLUDING REMARKS

This report has developed and illustrated a new method of analyzing
extreme-value deata based on order statistics that 1s convenient and. offers
certain important advantages over the method of moments of Gumbel now in
use, as well as being subject to certain limitations.

In view of these conslderations, this new method 1s recommended for
practical use in place of the present method of estimation In cases where
a limited amount of data must be made to yleld as precise results as
possible.

In developing an estimator intended to be useful and efficient a
nunber of subsidiary questions were encountered and treated. The most
important of these were (1) obtaining minimm-veriance unbiased linear
functions of order statistics for small samples and (2) finding the most
feasible way of breaking up a large sample into subgroups small enough
to teke advantage of the results in (1). In addition, considerable
attention was given to a number of theoretical points of difference
between the present and proposed methods.

Such theoretical study showed that one feature of the present Gumbel
method, namely, determination of the confidence intervals or control
curves for large values of the probability level P, does mot appear to
have an accurate theoretical basis and that, as a result, certain adjust-
ments should be made in the formulas. These adjustments would have the
effect of replacing the parallel control lines by diverging curves In the
regions of high values of P, resulting in smaller confidence intervals
for the more common values of P and larger intervals for the higher
values of P +that occur less often in practice, as might be expected
Intuitively.

The solutions to the ebove two main auxiliary problems have been
incorporated into a set of tables and a pair of wnified work sheets
designed so that the computations show at a glance the essential quan-
tities of interest - the actual predictions, their reliebility, and the
efficiency of the method. The method includes provision for showing
these results graphically.

The present study has also devoted some attention to a method
involving empirical random sampling and IBM tabulating equipment in
cases where direct numerical evaluation is prohibitive. The use of
12,000 random numbers and from 400 to 1,200 random samples was found
insufficient to yield accurate quantitative results for one form of the
Gunbel estimator (the simplified form) on account of sampling variation.
However, definite qualitative results in favor of the proposed method
were indicated in the case of samples of 20 and 30 and theoretical cal-
culation showed that this advantage was consideraebly greater for indefi-
nitely large samples.
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As a result of the experience gained in these studies, it seems
likely that for accurate results perhaps 10 times the number of samples
used (or more) should be taken and the computations performed through
specialized procedures on high-speed electronic computing equipment.

Further calculation showed that, in the case of the original form
of the Gumbel estimator, much more definite statements were possible
concerning efficiency. In this comparison the proposed estimator
turned out to be up to twice as efficient as that of Gumbel, not only
for the sample sizes of 20 and 30 but down to samples of 10 as well.
Although for very large samples thls advantage dropped considerably, the
proposed estimator remained at least 20 to 30 percent more efficient.

National Bureau of Standards,
Washington, D. C., January 13, 1953.
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APPENDIX A

PROOF THAT SUFFICIENT STATISTICS DO NOT EXIST FOR THE

PARAMETERS OF THE EXTREME-VALUE DISTRIBUTION'?

Problem: Consider a sample of n from the extreme-value population
whose density function20 is

£(x) = a.e"a(x-u)_e"a(x-u)

The parameters B = 1/a >0 and u are unknown and it is desired to
find sufficient statistics for them.

Theory: (1) If t = (3, . . ., t;) is sufficient (i.e., is a set
of jJointly sufficient statistics) for 6 = (8;, . . ., 6y) then the
density function of x = (%, . . ., X,) may be written in the form

P(x,0) = £(%,0)g(x)
(2) I +(x) = t(x') for sample points x and x', then

A=

P(x:e) = g(x) = h(x,X')
P(x',0) g(x')

(3) Hence for all those points where +t(x) has a constant value
the ratio A 1is free of 0, and thus sufficient statistics can be
found by seeing for which point sets A 1s constant.

19This appendix has been prepared by Mr. I. Richard Savage of the
Statistical Engineering lLeboratory, National Bureau of Standards.

20por convenience the symbol a is used in pla.ce of the para.m—
eter 1/B of the text.
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(¥) Evidently, if 6 =g(6) (i.e., 05 =& (61", - - -, &'),
i=1, .. ., k) is a nonsingular transformation of the parameters,
then also

P(x,0') _ £(t,6")e(x)
P(x',0')  £(t,0")e(x)

= h(x,x')

using the same (set of estimators) t as for 6. In other words, if

a set of statistics t 1is sufficient for a set of parameters 6, the

same set t 1is sufficient for any other set 6' obtained from 6 by
a nonsingular transformation.

Results: The above theory will now be applied to the problem at
hand and it will be shown that the largest point set on which A is
constant contains n! points, that is, it takes =n functions to
describe +t, so that the resulting sufficient statistic is the trivial

set t = (xl, . . ey xn) or an-, Z:x-z-, . e ey Zﬁx_l'-‘)- In other words,

the only sufficient statistics are the n observations themselves, so
that there is not a basis upon which to construct optimm estimators.

Analysis: For the distribution £(x)

n n n -a.(xi-u) -a( x4 '~u)
teem da(S - 3w S
i=l i=l i:l
If A is free of the parameters B ard wu, then it is also free of
ok logg A
a=1/p and u, and so are log, A and — Hence
da

n

log, A = na(x - x') - z E"a’(xi“u) _ e—a(Xi'—uZl

i=1
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Let u approach -w. It is first found that X = X' in order to bave
log, A free of u and a. Next, ,

o¥ 10g, A n - et
oie Lt Z Exi | aFerele) (g - u)e ﬂ
da i=1

n

0, k=2,3, ...

and this is true for k = 1 as well, since X = X'.

Since this is an identity in uw set u = 0. Then

n

TR I e

i:l i=l

T

These are finite sums; and, therefore, since they are identities
in a, it is clear, since a may converge to zero, that

y Y ()"

n

Thus the largest set of points of constancy of A consists of those
points which give the seme sample moments, and this fact implies the
desired result.

Statement (4) above implies that the result also holds if the
parameter u is replaced by E‘P =u+ Byp =u+ ¥p /a.

Example: To show how this method works for a familiar problem
consider a sample of n <from a normal distribution; here

-1/202 [Z(xi-e) Q-Z(xi'-e)r‘]

A=c¢e
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220 0= {3 [ - ] - = Y- )

and clearly the necessary and sufficient condition for A +to be con-

stant for all values of o2 and 6 is that z xi2 = Z(xi')a,

in = in' » Which is the classical result that the first two moments
are sufficient statistics.
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APPENDIX B

DETATLS OF THEORETICAL COMPARISON BETWEEN ORDER-STATISTICS

ESTIMATOR AND MOMENT ESTIMATOR OF GUMBEL

Since the order-statistics estimator has been fully discussed in
the text, the remaining problem in meking a comparison between it and
Gunmbel's moment estimator is, essentially, to develop the character-
istics of the Gumbel estimator.

The method of moments of Gumbel in present use provides the fol-
lowing estimators for the parameters u and B (ref. 6, p. 11, egs. (26)

end (27); also ref. 13, p. 10, eq. (29), but read (-ypfa) for ('fn/a.)>:

-

e
[
Xl
!

- (B1)

where X and sy are the mean and standerd deviation of the given sample
of size n; Sr-n is a certain computed quantity, depending on the sample

size n, which approaches Euler's constant 7 = 0.57T72 . . . from below
as n becomes infinite; and o, is another computed quantity, depending
on n, which approaches :r/\l—6_ =1.28255 . . . from below as n Dbecomes
infinite.

For sufficiently large samples the quantities .3_’n and o, may be

replaced by their limiting values.2l This gives the somewhat simpler
estimators, for computation purposes,

-
W' =X - {é—ysx
- (B2)
, 6
B = gsx

-—

21These 1limit velues have been used, for example, in reference k,
page 176, and in reference 6, page 10.
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It is shown below that the net effect of this simplification. is to
diminish the bias and to understate greatly the relative efficiency

of the order-statistics estimator to the Gumbel estimator. Since the
asymptotic form (B2) involves simpler notation and is occasionally used
in practice, it has seemed desirable to present this case in detail
below (see the next section) and also in the main text. The corre-
sponding results for the original form (Bl) are indicated in the sec-
tion "Comparison With Original Gumbel Estimator"” and tebulated in

table VI.

Comparison With Simplified Gumbel Estimator

From the estimators (B2) the followlng estimator of Ep can be
built up, which will be denoted by ’EG:

§G=ﬁl+’,§!yP=§+ (yP-‘)')— 8y (B3)

This is a function of the n sample values X1s Xpy oo ey X and it

is desired to find its mean and variance, and thence its bias and
efficiency.

The mean is

E(EG) =u+ 7B + (yP - 7)—§E(S)B

which can be rearranged to give

E(fg) =tp+ E;—EE(s) - JZ[(YP - 7)B (Bl)

where £p = u + ¥pB, B(X) = u+ 78, and E(s) is the expected value of
the sample standard deviation s when the sample is from the reduced
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extreme-value distribution exp (-—e"y). Equation (BY) shows that the
Gumbel estimator is biza.sed22 (unless E(s) = ﬂ/\[6_ for all sample sizes,
which seems highly unlikely) , with bias

b(Es) = E(fg) - &p = E—g E(s) - J(YP - 7)B (85)

The variance of the estimator EG is

Or‘Q(IL:’\G) = Uie + %(YP - 7)202(811) + 2(YP - 7)—11—\‘g cov (i‘,sx)

n

= E—2+ 1% (yp - 7)202(s) + 2(yp - 7)—‘1;—6_ cov (,Tr,szl B2 (B6)

where oia = x2/6én, o2(s) 1is the variance of the sample standard devia-
tion for samples from the reduced distribution exp (—e"y), and cov (¥,s)
is the covariance of the mean and standard deviation in such samples.

22An unbiased estimator analogous to EG is

Eo =X+ (yP - 7)sx/E(s)

for, as in equation (BY),

E(EO)

u+ 7B + (yP -, 7)E(s)B/E(s)

=u+ Byp

tp

However, this estimator could not be used in an actual problem since E(s)
is not known. Computation of this quantity was one of the aims of the
IBM computing procedures discussed in the text.
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The efficiency of EG could be evaluated by sultable generaliza-

tion of equation (19) to biased estimators. The variance Q, in the

denominator would be replaced by the mean square error.2? The numerator
would have to be replaced by a complicated expression which, for unbiased
estimators, would reduce to Qp. Instead of evaluating efficiency for

the biased estimator EG’ therefore, the discussion will be greatly sim-

plified by limiting it to relative efficiency. The relative efficiency
of one estimator Ty to another T, 1is defined as the ratio of mean

square errors

MSE (1) :
R(Tl,Tz) = M (B7)

This ratio has been used as an index of comparison of two estimators
(e.g., ref. 15). Thus, the relative efficiency of ‘the order-statistics

estimator §P to the Gumbel estimator €G is, by equation (13) and the

fact that the former estimator is unbilased,

I

R(EpEg) = Y

| Bg. (B6) + [Eq. (135I|2

8
VI (B8)

where k 1is the number of subgroups of size m into which the sample

of n is partitionedeu (eq. (23), assuming there is no remainder sub-
group), and the expressions needed for the numerator are given by the
equation numbers indicated.

23For discussion of mean square error see equation (13) and accom-
panying text.

2hryys, n=10 =2
gives k =4 and m = 5;
s

For n iInfinite, m 1

X5 gives k=2 and m=5; n=20=L4x5
n=30=5x%x6 gives k=5 and m = 6.
taken as 6
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The key quantities needed in the calculation of relative efficiencies
are, from equations (B5) and (B6), E(s), ¢2(s), and cov (J,s). For
general sample size mn, their exact values are given by mulitiple integrals
whose evaluation would apparently require a prohibitive amount of labor.
Instead, the following method of empirical sampling was used with the aid
of IBM calculating and tabulating equipment.

The universe of (reduced) extreme values &(y) = exp (-e"y) was

approximated by constructing a population of 12,000 suitable random num-
bers and punching each number on an IBM punch card. These were then
mechanically separated into 1,200 random samples of size n = 10 and

for each sample the mean Yy, standard deviation s, and their product 7s
were obtained. This was equivalent to having a "population" of 1,200
means, one of 1,200 standard deviations, and ome of 1,200 products of the
mean and standard deviation. It was then assumed that the arithmetic
mean of each of the three populations would be a close approximation to
the mathematicel expectations (averages) of the desired quantities, so
that these approximations could be taken as estimates of the moments E(s)

and E(¥s). From these values and the relation

\E(52)=”;1oy2=n-1£§_

=)

the variance

@) =369 - () ° - 222 2 - i)

was computed and also the covariance
cov (¥7,8) = E(¥8) - E(F)E(s) = E(F8) - 7E(s)

The five quantities E(¥), 02(§), E(s), 0'2(5) and cov (y,s). are
shown in table VIITI, together with the corresponding theoretical values
that can be rea.dily calculated.

In actual use this procedure was modified somewhat, since only one
value of edch of the desired quantities would be produced by the
12,000 cards and 1,200 samples. This single value would be subject to
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the fluctuations of random sampling and would be difficult to rely on in
meking inferences. This difficulty was met by breaking the "population”
of 1,200 samples into 12 sets of 100 samples and obtaining 12 values of
each of the desired moments instead of only one.' These 12 values,
although each was based on fewer samples, served to furnish an idea of
how the single value based on 1,200 samples was affected by sampling
variation. Such analysis has provided a far firmer basis for Judgment
of relative efficiency.

The above procedure resulted in moments calculated for samples of
size n = 10. In like manner, 600 random samples of size n = 20 were
drawn, after starting afresh by putting all 12,000 cards together, but
this time only 6 instead of 12 sets of 100 samples were available,
resulting in 6 values of the desired quantities for comparison. Finally,
the 12,000 cards were reprocessed to yield 400 samples of size n = 30,
giving 4 values each based on a set of 100 samples.

The resulting sets of 12, 6, and 4 values each were substituted in
the appropriate formlas (B5), (B6), and (B8) in order to obtain the
relative efficiency of the order-statistics estimator to the (simplified)
Gumbel estimator. These formulas, all of which depend upon yp, Were

eveluated at the probability level P = 0.95. All these results are
summarized in table V which shows the values of the bias, mean square
error, and relative efficiency calculated for each set of 100 samples
of sizes 10, 20, and 30, together with the corresponding average values
obtained from all 1,200 samples combined.

For ease of comparison, the relative efficiencies are also charted
in figure 6.

These results constibute the basis of the statement in the text
that at the probability level P = 0.95, for samples of 20 and 30, the
proposed method has greater efficiency than the Gumbel method using the
simplified estimator, while for samples of 10 the efficiencies are about
the same.

Comparison With Original Gumbel Estimator

The estimator corresponding to EG in equation (B3), built up from
the estimators (Bl), is Co

EG =ﬁ+§yP=x+ks (B9)
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where
§h - ¥p
ky=—7F—="Pppd (B10)
n
Here
2= (3 - 7)1
and

- “Ngyp " ¥ (B11)
dn yP -7

) bn,P

is the conversion factor for passing from the multiplier 4 of s, in

equation (B3) to k, in equation (B9). It is apparent from the discus-
sion at the begiming of this appendix that, for infinitely large values
of n, b,p=1, 80 that equation (B9) includes the asymptotic case.

2

For finite values of n, however, o, <-n/Jg_ and §£ < 7. Hence, b, p,
J

being a product of two factors each greater than 1, may considerabl
exceed 1, so that the multiplier b, p in equations (B10) and (B11
2

becomes appreciably larger then the multiplier d in equation (B3). Thus,
for samples of 10, 20, and 30, computation shows that, for P = 0.95,
for example, . :

ko = 1.3974 —1
koo = 1.234d (B12)
k30 = 1.173d B
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The bias of EG n 18, in a manner similar to that in the preceding
a4
section, in view of equation (BlO),

b(EG,n) = E(yP -7)+ knE(leB

(yP - 7)B£E(S)bn:1° - JzIB (B13)

Table VI (columns 2 and 3) indicates that the presence of the factor by, p
converts the small negative biases into larger positive ones.

For the varisnce there is obtained from equation (B9), analogously
to the procedure in the preceding section,

~ 2
UE(gG,n) - E&n‘%?(s) + 2k cov (F,8) + .’655]52 (BLk)

The corresponding expression (B6) may be written

?(Bg) = E2c2(s) + 2d cov (F,8) + 2—2] B2 (B15)

n

Comparison of these two expressions shows, since cov (¥,8) was found
to be positive, that replacement of d by the larger value k, con-

siderably increases the variance of the Gumbel estimator. Values of the
veriance for the original and simplified estimators are listed in col-
ums 4 and 5 of table VI. Comparison of these columns indicates that

the variance of the original estimator can become more than half agein

as large as the variance of the simplified estimators, depending on sample
size and probaebility P. The effect is most marked for the lower levels
of P and smaller sample sizes and disappears as shown when both these
factors increase.

The result of these increases in bias and variance is to increase
greatly the mean square error (columns 6 and 7, table VI) and thus to
increase the relative efficiency of the order-statistics estimator
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(colums 8 and 9). As a result, the order-statistics estimator is up to
twice as efficient as the originsl Gumbel estimator even for samples as
small as 10. This tremendous increase in efficiency falls off slowly,
as shown, when sample size increases. For fixed sample size the effi-
clency increases for large values of P. These differences in effi-
clency are sufficiently large to oubtwelgh completely any fluctuations
of random sampling attributable to the empirical sampling method of

evaluation used.

It must be concluded, therefore, that the original Gumbel estimator
is both more biased and much less efficient than its simplified form.
As a result, comparison of the order-statistics estimator with the
simplified Gumbel estimator gives very conservative results and greatly
understates the actual improvement in efficiency of the proposed method
over the method in present use.
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APPENDIX C

MATHEMATICAT, FORMULATION AND SOLUTTON

OF MINIMUM-VARTANCE FPROBLEM

Consider an estimator of §P =u-+ ByP of the form

n
L = Z WiXy (c1)

i=1

where xlg xgg .« . S X, &re the n order statistics of & sample

of n from the extreme-value distribution (l) , and seek to find the
velues of the w; vwhich minimize var (L) subject to

E(L) = ¢ (c2)

The estimator I in equation (C8) below with weights so determined
is called the minimm-variance, unbiased, (1inear) order-statistics
estimator for sample size mn.2>

Writing

X =u+ By (c3)
where y 1s the reduced variable corresponding to x, one also has
X =u+t BYi . (ck)

where i s Yo £...8 Yy, &are the n order statistics of a sample

of size n from the reduced distribution exp (-e"y) , free of param-
eters. It follows that

23This problem has been treated by general matrix methods by Lloyd
(ref. 16). He obtained the solution to & set of equations equivalent to
sets (C7) and (C9) below, but his results were expressed in very general
notation and are not in convenient form for use here.
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E(x;) = u+ BE(yy) (c5)

since u and B, though unknown, are constants not subject to sampling
varigtion when the operation of expectation is performed. The values
E(yi) have been tabulated in reference 17 for i = n(1l)min(l,n - 25),

n = 1(1)10(5)60(10)100.25

These results give readily

B(L) = » wylu+ BE(y;)| = tp = u+ By (c6)

This is required to be an identity for all values of the parameters u
and B. Equating their coefficients gives the two conditlons on the

weights Wyt

~

- (c7)

where the E(yi) are the numerical values tablulated in reference 17.
Turning to the variance, there is obtained

var (L) = i wizcxiz + Z

n
i=1 j=1
i

F

Wiw J Uxix j

[ 'I_'_l:[\/lb

26The notation in the table cited differs from that used here:
E(yi) in this report corresponds to E(yn_ i) in the table.
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From equétion (Ct) and the properties of the variances and covariances
of linear estimators,

2 _ g2y

2 _ p24.2
Yi = P70y

*5

- p2 _ n2
ij_xj = B \inyj = B Gi,j

meking an obvious simplification in notation, whence

V, = var (L) = (Zcizwig + Z Z'Uijwiwj> [32

= Minimum subject to conditioms (CT) (c8)

This is a constrained minimum problem for variation in the unknown LA
and is equivalent to finding the (unconstrained) minimum of27

Gy = (Z“i w24y )'o 15"1"3) B% + M(Zwi - l) + “11:2: E(?Y:L)"’i - Y;l

where }\l and Ky are the Lagrange multipliers. Since [32 >0 is con-
stant, though unknown, this is the same as minimizing

G = % =) 0P} ) oy X(Zwi i l) o |:}——_E(yi i y]

p

27The temporary notation p and Ky should not be confused with
the symbols for moments.
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where A =7\ /B2 and p = pq /62. Setting the derivetives with respect
to wy, where k=1, 2, . . ., n, equal to O and dividing by 2,

3
oy W + E opry F A+ HE(R) =0, k=1,2, ..., 1 (c9)
i=1

(1)

These latter are n linear equations which, with the two in condi-
tions (CT7), form a simultaneous system of n + 2 equations in the

n + 2 unknowns Wy, Wy o e sy Wy, A, and p. The values of A
and u are useful-as a check, since, if equation (C9) is multiplied
by W, end summed, the result, in view of conditions (cT7) which the

w;'s satisfy and equation (c8), is

Vy,min + N+ 1¥p = O

that is,
Vn’ in = “N - Wp
The minimm value vn,min will be denoted by Q.

Before solving the sets (C7) and (C9) it is necessary to determine
the coefficients in these linear equations. The values of E(yk) are

tabulated, as already mentioned. The variances and covariances o‘k2
and Oy involve complicated integrals. The author has been successful

in expressing these integrals in terms of simpler ones already tabulated
(ref. 18). The results are, for the variances,

o = B(y;?) - @(&)]2
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Ely = : _ E (—l)C . (1 + )
(i) (I ]):( i)f o go

i=1,2, .. ., 1

vwhere

g2(1+r) - E;+(7+logei+r);‘|

i+r
and 7 = Euler's constant = 0.57721 56649 . . .; and, for the covariances,
0’ij = E(yiyj) - E(yi)E(yj)

j-i-1 n-

E(y _ n! (_l)r"'s
(iyj) (i -D3-1-1)Hn - 3 ; s=0 g

er-i-lcsn-j¢(i +r,j-1i-1+ 8)

i<js;i,j=1,2, .. ., 1

where the function ¢ is defined by

etug(t,u) = (u - B)egy(t + u) + t?[gﬂ‘cﬂ 2. ZL(l + %) +

in which & is the same function as before,

1
g (t) == (7 + log, t)
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and

L(1 + x)

1-+37

“log, W

f —-..D.g—-. dxr
1 w -1

=i£:_l)_n+ixn

n=1 n2

2
] 2 .= ]
= + o— = Ll + =
(loge x) 3 ( )

is Spence's integral, which has been most extensively tabulated (to
12 places) in reference 19. The function g; @also occurs in an expres-

sion for the means:

n-1

-l)r n-1 1
(i—l)!(n_i):;( Cr gl( +I‘)

n!

E(vs) =

The sbove formules have been evaluated as far as n = 6 and the
results are listed in table II. The values in the table are believed
to be accurate to the number of places shown. Those for the means
agree (to within a unit in the seventh place) to the seven places to
which the means have previously been tebulated.

Table IT thus provides the coefficients in the system of equa-

tions (C7) and (C9) in the weights w; end in A and p. The right-

hand sides of these =n + 2 equations are 1, Vps 0. .., 0O and the
solutions Wiy, A, and u are linear combinations of these with numeri-
cal coefficients which involve only 012, SERT and E(yi), but not Ype
Hence the solutions are all of the form

wi=ai+bin, i=212, .. .,n
A= ¢y + dlyP
b= cy + doyp
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Substituting these values of w; 1n equation (C8) yields an expression
of the form

= Vn,min = (AnyPe + Bpyp + Cn) B2 (c10)

The quantities a; and b; for the weights wj, and the coefficients Ay,
By, end Cp of Qn, are given in table I for n = 2 to 6. The solution

of the system of equations became Ilncreasingly lengthy for increasing
values of n, with correspondingly diminishing accuracy, so that the com-
putations were discontinued beyond n = 6. The procedures for handling
samples larger than n = 6 are explained in the main text of this report.
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APPENDIX D
SHORT-CUT METHOD FOR VERY LARGE SAMPLES

If one has a sample of several hundred or more extreme observations,
as may sometimes be the case (e.g. ref. 6, where a sample of 485 extremes
was a.nalyzed) it is possible to select just three'out of all the observa-
tions and from them obtain useful estimators.

This technique is based on a method used by Mosteller (ref. 20) for
samples from the normal distribution. If the n sample values from a
(continuous) population whose density is f£(x) when arranged in ascending
order are denoted by the order statistics X5 Xpy - - 5 Xps and n 1is

very large, the application of Mosteller's method involves taking the
observations whose ranks are M, pn, and vn, where O0<A<p<y<l

with A, u, and v suitebly determined, and choosing a and b so that20

£ = ax,.. + b(xm - xm) (p1)
I
is an (asynmtotically) unbiased estimator of the parameter gP =u+ ByP.
(The reason for choosing this particular form is discussed below.)

The meen snd variance of the estimator £ in equation (D1) are com-
puted from the corresponding moments of order statistics of the form Fan»

with n very large and A a proper fraction not too near O or 1. Under
these circumstances the theorem used by Mosteller states that in the 1limit,
as n JIncreases indefinitely,

(1) Xan becomes normally distributed, with mean and variance
AL =N

2t ()] 2

t
A
where t, is defined by A = f £(x) dx, and

-0

(D3)

o (*na) =

28yhen (as will generally be the case) the ranks n, pn, and vn
are not integers, they will be deflned to be the nearest integers to
these quantities.
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(2) The covariance of any two order statistics XAn and xl_m,
A< |, is given by

(DY)

where tp. is defined similerly to t?\

For £ in equation (D1) to be unbiased in the case where f(x) is
the extreme-value distribution,

E(f) = tp=u+ Byp (p5)

must be an identity in u and B. It is first noted that, from pre-
vious discussion in the text (see the section "Extreme-Value Distribution
and Meaning of Parameters"), the parameter ,gP is precisely the abscissa

of the ordinate which cuts off the area P +to the left. Hence one has
simply

) = &)\ = u+ Byy, (D6)

Equations (D1), (D2), and (D5) then give

at, + b(t, - 'b)\) =u+ ByP
or
a.(u-!- Byp.) + b(yv - y-)\)B = u+ ypb

from which, upon equating coefficients of u and B8,

(o7
_ Jp - yp_

yv-y')\
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In principle, the fractions A, u, and v might be determined so as
to minimize the variance of £ and thus make its efficiency a maximum,
but this would require very extensive computation which would not be
warranted on account of the limited importance of efficiency when the
available sample is very large. (For example, a 50-percent-efficient
estimator with a sample of 1,000 gives results equivalent to using a
sample of 500 - still a very large sample.29) Instead consider esti-
mators of gP of the form

vhere U and ﬁ are estimators of the two parameters u and B that
involve the fewest possible number of order statistics xg, without undue

sacrifice in efficiency as computed for indefinitely large samples. The
aim is to find, with & minimum amount of computation, separate unbiased
estimators @ and f of the parameters u and B, each of which has
minimum variance or best efficiency in some sense, in the hope that the
linear combination (D8), which will also be unbiased, will turn out to
have efficiency which is not unreasonably small. This is a heuristic

~

method, since the fact that u and B are efficient does not imply
that their combination U + ypB is efficient. Better estimators

probably exist, but obtaining just one of reasonable efficiency is
satisfactory.

It turns out that the modal parameter wu can be estimated by a .
single order statistic. Gumbel has shown (ref. 21, eq. (50)) that the
value of p <for which Xin best (i.e., with the least variance or most

efficiency) estimates u is p = 0.20319. For simplicity, therefore,
replace U in equation (D8) by

4 = X5 o0on ‘ (D9)

29These considerations assume that the sample of data is already
at hand, perhaps by & survey already made, such as the U. S. Weather
Bureau Thunderstorm Project mentioned in reference 6. Of course, if it
is & question of plamming for the securing of data, it is desirable to
use as efficient an estimator as possible, but in that case the inves-
tigation will rarely be sufficiently extensive to provide samples large
enocugh for the method described in this appendix to be applicable.
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The scale parsmeter B requires at least two order statistics, or
rather their difference x . - Xpno for estimation, multiplied by a

suitable unbiasing factor which will become absorbed in the expression
for b in equations (D7). A considersble number of trials indicate
that the peir of values A = 0.05 and v = 0.85 glves an estimate

of B with efficlency probably close to the meximmm, if not actually
maximum. Since very precise results are not being sought, this pair
of values is adopted here. Thus equation (Dl), in view of equa-

tions (D7), becomes

€ =% oon * 0'3256(yP + 0'4759)(x0.85n - x0.03n) (p10)

The varlance of this estimator is obtained from the rule

m m m
" var EE: 8qxXy| = EE:.ai2cx12 +2 E{: ai8j Ccov (xi,xj)
i=1 i=1 iiigl

which after simplification gives

o2(E) = 8.6916a° - 0.06814 + 1.54h2 (D11)

where
d = 0.3256yp + 0.1549

Since E is unbissed, a measure of its efficiency may be obtained
by dividing its variance into the Cramér-Rao lower bound Qrp (see

eq. (19) and accompanying text; numerical velues are given in the
Q_ column of teble ITI(a)). The results are as follows, for several
values of P of interest:

P Efficiency of 3
0.95 0.645
.99 .649
.999 652
1 (limiting .660
value)
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Thus, this large-sample method of estimation is slightly less than two-
thirds efficient. However, ds noted above, such apparently low effi-
ciency need not be a serious metter in practice.

For convenience, a summary of the method described above is given
here.

(1) Arrenge all n observations (assumed to be independent and
from the same extreme-value distribution) in order of increasing size,
and then rank them from 1 to n.

(2) By hand or mechanical sorting, select the three observations
whose ranks are the nearest integers to 0.03n, 0.20n, and 0.85n. Denote

these by X5 030’ *0.20m’ and X5 8sn*

(3) Compute the predicted values £, for various probability
levels P, by formula (D10).

(4) For each value of P compute the variance from formula (Dil).

(5) Take the square root of the variance fo obtain the standard
deviation. This gives the half-width of the §8-percent confidence band,
since for large samples the distribution of £ approaches normality.
Similarly, twice the standard deviation determines the 95-percent confi-
dence band, and 2.58 standard deviations determine the 99-percent band.

(6) Obtain the efficiencies by dividing the variance into the
Cramér-Rao lower bound Q, in table ITI(a).
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APPENDIX E

ANATYSTS OF CONFIDENCE INTERVALS IN ORDER-STATISTICS
METHOD AND METHOD OF MOMENTS OF GUMBEL
Confidence Intervals in Order-Statistics Method

(Based on Normality Assumption)

In the text (see rule (5) in the section "Summary of Procedures")
the confidence intervals given for various confidence levels in the
proposed method are obtained by laying off a certain number of standard
deviations, computed for the estimator gP, on either side of the esti-

mated value given by the fitted line. If this is done for different
values of P and the ends are joined, as in figure 4, a confidence band

" 1s obtained. The number of standard deviations given in the method -

one for a confidence level of 68 percent, two for a level of 95 percent -~
is based on the assumption that the estimator EP is normelly distributed.

The purpose of this section is to investigate this assumption more closely.

It will be recalled that the estimator £, is obtained by splitting

the sample into & number of equal groups with perhaps a remainder of 4if-
ferent size (see text in connection with egs. (22), (25), and (26)).
Then £, can be written (eq. (26))

gP = tT + t'T’

where T is the average of a certain linear function of the sample vari-
ables (eq. (22)) taken over the k subgroups, ?: is another linear
function, and t and +' are constants. Thus gP is the sum of +two

parts: (1) An average of k independent random varisbles (tTi)5O all

with the same distribution and (2) a single variable (t'T') with a some-
vwhat different distribution. By the central limit theorem in probability
(ref. 11, p. 215), according to which the average of a number of random
variables having the same distribution (with first two moments existing)

is asymptotically normal as the number of variables increases indefinitely,
the first part is approximately normal for large values of k. In fact,

3OThese variables are independent because the subgroups were assumed
to be formed independently.
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extensive experience has shown that a normal distribution is often a
remarkably close approximation even if the number of variables k 1is
under 10. Furthermore, the first two moments (actually all) of each
variable T; certainly exist - in fact the proposed method is based

upon their computed values. Hence, it is safe to say that for k = 10
or more the first part is very closely normal. The second part (t!'T')
is a variable which has the same general character as Ti (a weighted

sum of order statistics; see eq. (25)) and hence isAbelieved not to
impair significantly the approximate normelity of EP‘ Its influence

is likely to be small, especially if the number of other variables k
is large.

For samples as large as 100, k =-16 if broken into subgroups of 6,
or k = 20 if broken into subgroups of 5. Since these values of k are
considerably larger than 10, the pregeding discussion shows that it is
quite safe to assume normality for gP for samples of 100 or more, soO

that the corresponding multiples of the standard deviation given above
are sufficiently accurate in such cases. In fact, it is likely that the
normal approximation remains good for practical purposes down to samples
of 50 or 60, becoming, of course, worse as sample size decreases still
further. However, in the absence of knowledge about the exact distri-
bution of the order-statistics estimator EP for smaller samples, the

normal approximation is apparently the only simple cone available for
determining confidence limits. It may be noted that approximate methods
are also involved in determination of confidence limits in the Gumbel
method. This point is further discussed in the following section.

Confidence Intervals for Largest Extremes in Gumbel Method

Gunbel's derivation of confidence intervals.- The purpose of this

section is to inquire into the theoretical accuracy of the confidence
intervals (or confidence band) given for extreme predictions in Gumbel's

method.

In the Gumbel method the 68-percent confidence-interval half-width
for the largest in a sample of n extremes and for all larger predicted

valuesot is, in Gumbel's notation (table VII(b), sec. IV),

3lfmat is, for all values of P beyond n/(n + 1), which is the
probability assigned to the largest value in the sample, X, For
smaller values of P, the confidence interval is given by a different
method with which this report will not be concerned inasmuch as the
primary interest is in large values of P corresponding to extreme
predictions.
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1.1h1
o

=1.1418; B = 1/a (B1)

Ak,n =

where B is the scale parameter (or rather, an estimate of it) of the
extreme-value distribution from which the observations are assumed +to
come. To obtain the confidence intervel for a given prediction prob-
ebility P 2 n/(n+ 1), the value A, , is added to, and subtracted

from, the estimate given by Gumbe}, denoted by him by x (table VII(b),
sec. IIT) and in this report by Ey- Cumbel's (68-percent) confidence

interval for predictions beyond the largest observed extreme x, is
thus given by

o £ 1.141p (E2)

where B 1is the scale parameter (or an estimate thereof) of the extreme-
value population from which the observed extremes x have been assumed

to come:32
F(x) = o(y) = exp (-¥), y=(x-w/p (E3)

The multiplier 1.141 used for the 68-percent confidence band is obtained
by setting C = 0.68 and solving for y the equation

o(y) - o(-y) =¢C (E4)

which is parameter free and gives y(C) = y(0.68) = 1.14073 (ref. 13,
p. 6). Thus

v = -1.14073 to y = 1.14073 (E5)

32From the theory of extreme values the distribution of the largest
of the observed values Xx,, in a sample of n extremes, is exactly an

extreme-value distribution that has the same scale parameter 8.
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is the interval for the reduced variate that cuts off (or corresponds to)
a central area of 0.68 under the extreme-value density curve shown in
figure 2. The corresponding interval that cuts off the same area under
the original (unreduced) x-distribution thus has width given by the
values (E5) multiplied by the scale factor B, since

XxX=u+ yB

The half-width is therefore 1.140T73B, that is, equation (F1).

The following discussion indicates that this method of obtaining
confidence intervals is inaccurate in two respects: (1) The confidence
interval is of constant instead of increasing width for large values
of Py (2) the scale parameter used is not strictly applicable.

Constant width of confidence interval.- The method of Gumbel of
obtaining confidence intervals (E2) treats the estimator EG as though

it has an extreme-value distribution with the same scale parameter B
as in the population underlying the observed extremes Xn (including the

largest extreme x,). This assumption cannot be considered strictly

valid, since it implies that the confidence width remains constant for
all large values of P, as equation (El) does not involve P. 1In other
words, this asserts that from a sample of 20 observations or even 100,
for example, statements can be made about events that will occur with
probability one in a million or billion and yet have the same uncer-
tainty of only Ax,n in the present estimate for x as for predictions

gbout events with probability, say, 1 in 100. It does not seem reasonable

that a limited sampie can tell anything at all meaningful about such
extremely rare events, let alone predict.them with the same amount of

uncertainty no matter what the probability of occurrence.

This lack of agreement with common intuition indicates that the Gumbel
estimator Eq = Qo+ yrﬁ cannot be treated, for all large values of P,

as if it has an extreme-value distribution with constant scale parameter.
Besides these considerations, there is another reason why the Gumbel

estimator does not itself have an extreme-value distribution, at least
for large samples of data. The estimator is a sample characteristic of

the form

Bo =+ kps, (E6)
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vhere k 1is a constant for given values of P and n. The appropriate
distribution of such an expression for large samples is given by a general
limit theorem in probability (ref. 11, p. 367) to the effect that under

broad conditions any sample characteristic based on momepts such as EG

is, for large values of n, approximately normally distributed. Thus for
large values of n +the Gumbel estimator (E6) should be considered to be
approximately normal, with variance given by an expression which increases

as kP2 for P and kP large. Moreover, this would yleld a confidence

band that diverges with increasing P, avolding the difficulty of the
parallel curves mentioned above.

Scale parameter.- Tittle is known about the exact distribution of
the Gumbel estimator gG, particularly for small sample sizes. Yet

even if it were an extreme-value distribution (of the form of equa-

tion (E3)), it would seem that its scale parameter would not be B but
a certain multiple of it, Bp, found below. This multiple may be deter-
mined by considering the relatioqkbetween the variance of the distribu-
tion (assumed extreme-value) of §G and the scale parameter Bl of +this

distribution:

2
®(&g) = % 512 (ET)

But there is available an approximete expression for the left side, namely,
equation (B6) in appendix B. This is of the form

?(Eg) = a(vp) (26)

where B is the scale parameter of the original (extreme-velue)
x-distribution and q(yP) is & quadratic expression in the probability

factor yp Wwith coefficients involving the quantities o2(s8) and

cov (?,s), whose computation by empirical sampling is ingicated in
appendix B; q(yro may be regarded as a known value Sp  depending

on P. Hence

o*(8g) = Spo8° (£9)




66 NACA TN 3053

Substituting in equation (E7) gives

7T

By = <\ESP> B = BpB (E10)

which defines the multiple BP. Thus the confidence-interval half-
width (El) must be replaced by

A' = 1.141B.B (B11)

where now A' is no longer constant with P but, on account of Bp,
actually increases very rapidly for large values of yp corresponding

to values of P near 1. Thus a modified confidence band is obtained
whose divergence states that the amount of uncertainty increases with-
out limit as one attempts to estimate increasingly improbable events.

This also avoids the conflict with common sense mentioned in the sec-

tion "Constant width of confidence interval.”

The actual values of Bp are of interest and are given in the fol-

lowing table for several important values of P and for the three sample
sizes for which they were computed in appendix B:

\/'6_ \[6— 5 l/2

. Be = 3 8p = 2 °(t)[°
n =10 n =20 n = 30
0.95 0.749 0.560 0.458
.99 1.093 .825 673
.999 1.593 1.208 .986

In this table the values of BP less than 1 indicate that the

modified confidence band (eq. (E1l)) is better (i.e., narrower) than
the Gumbel confidence band and vice versa for the values of Bp greater

then 1. Thus, the modified band is indicated to be considerably better
in the region P = 0.95 to 0.99 for samples of 20 and 30. TFor samples
of 10, the advantage is less at P = 0.95 and becomes reversed in favor
of the original Gumbel confidence band for P = 0.99 and higher values.
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The above comparison remsins exactly the same for any other confi-
dence level, it being merely necessary to replace 1.141 in equations (El)
and (Ell) by the corresponding value y(C) determined from equation (EY).
Thus, for the 95-percent level, y(0.95) = 3.06685 (ref. 5, lect. 3,
table 3.1). At each level the confidence intervals of the two methods
are affected in the same ratio by such multipliers; that is, their ratio
to each other remains BP, regardless of confidence level C. -

‘Comparison of Confidenge Intervals in Gumbel Method
and Method of Order Statistics

Teble IX shows the actual confidence intervals (in terms of the
scale parameter B) for the two levels C = 0.68 and C = 0.95 for
the Gumbel method and as modified by the factor Bp and also compares

these (where spplicable) with the intervals given by the order-statistics
method. EFxcept for samples of 10, for which the Gumbel interval is apt
to be narrower, the modification denoted by Bp, discussed in the pre-

vious section, reduces the intervel width for P = 0.99 (and less) by
significant emounts - by about one-sixth or more for samples of 20 (col-
ums 5 and 6) and by ebout one-third or more for samples of 30 (columns 8
and 9). These results are of course implied by the values of BP given

in the preceding section. Also, the order-statistics confidence interval
is narrower than the (unmodified) Gumbel interval in many cases, for P
not beyond 0.99 and sample size not below 20. However, it increases
beyond the constant Gumbel width for larger probebilities, in agreement
with theoretical requirements. At P = 0.99 or less, there are two
additional features to be moted. (1) With increasing confidence level,
the numerical factor in the Gumbel interval Oy,n  Increases faster in

elther the modified intervel A' or in the order-statistics interval
(denoted by A, in table IX), so that both the modified method and the

order-statistics method reduce the confidence interval of the Gumbel
method by constantly increasing percentages as the confidence level
increases. For example, for P = 0.99 and for samples of 20 the order-
statistics interval is about 11 percent narrower than the Gumbel inter-
val for a confidence level of 68 percent and about 30 percent narrower
for a level of 95 percent (columms 5 and 7). (2) Similarly, the per-
centage reduction increases with sample size. Thus, for P = 0.99 and
a confidence level of 68 percent, the reductions are 11 percent for
samples of 20 and 29 percent for samples of 30 (colummg 8 and 10).
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WORK SEHEET 1.- DETERMITATIOR OF ESTIMATORS
E.r"or instructions see the section "Summary of Pmced.\n-ea":l
Source: NRACA - Langley — Sample ITT Computer: J. L.
Date: 5/29/52
Cbserved I. Subgroup sires and proportionality factors:
Record | extremes, ‘
On N =2} =kntmn t = kn/n = 0.76261 t' =m'/n = 0.21739
1 0.758 =3x6+5 t°fk = 0.20416 ()2 = 0.04726
2 .90
3 1.08 ka3 na6 m'=5
i 1.20 *
3 1.38
6 N:A ITA. Main subgroups:
'g -8 Weights ay and by (from table I)
Nl
9 .90 im 1 2 3 y 3 6 Check sum
10 1.20 .
b gg ay = 0.33545 0.225%9  0.16562  0.12105 0.08352  0.04887 1 =1
12 1. .
by = -0.k5928  -0.03599 0.07319  0.12673  0.1%953  0.14581L  -0.00001 = O
13 1.15
i;“ igg Observations x; in increasing order from 1=l to i=m
16 153 chocx
I shgo T % X3 om % % e D MM ) by
19 101 1 0.75 0.81 0.90 21.08 1l.20 1.38 6.12 0.89669 0.20978
20 '93 2 -5 & .88 .90 1.08 1.20 5.6L 85052 .14168
21 1:15 3 .98 1.00 1.02 115 1.31 1.k3 6.8 1.06127 .13870
22 TS b
23 1.16 5
Sum 23.62 .
X e
Sum 2.48 2,60 2.80 3.13 3.59 L.,0l 18.62 2.80848 0.49016
Fad axfi +(Zbix_l/k)yp = 0.9%616 + 0.16330 v,
ITB. Remainder subgroup:
Weights a;' and b;' (from tadble I)
i 1 2 5 L 3 6 Chack sum
a;' = 0.51893  0.24628 0.16761  0.10882  0.05835  ————-—  0.99999 =1
by'= -0.50313  0.0065%  0.13045  0.18166  0.18448 cooeoem O =0
Observations x;' in increasing order from i =1 to iam'
cmck 1 1]
xli “2' x}u xll-' le 16' sum Za_j_'xl Zbi xi'
0.75 0.95 1.00 1l.15 1.6 -—-- 5.0 0.90535 0.18340
L DIE A (Zbi'xi')yP = 0.90335 + 018340 vp
ITT. Estimators:
Bp = T + $'T' = 0.92046 + 0.16T7h ¥,
um=0.9204, B = O.lé lsl




e e e

WORK SHEET 2.- FREDICTED VALARS, CONFIDEMCE BAND, EFFICIENCY, ANMD FLOTTING FOSITIONS

(a) Predicted values, confidence band, and effliciency

D ) @ ® ® ® @ ® ®
68-percant confidancs - Efficlency
o v Prodicted values Q= O Wl ™ (Ep) = bend half-vidth, ?2: r:';:n . arp
P 3 - . 1 -~ -
tp = 032046 + 0.16TT%/p | (£rom table III) | (from table o) |5 O+ (¢ Yo, otp) = ‘J"“ (3p) sable ITT) var (11,)
t2/x = 0,206 | (£')2 = 0.0T26 B = 0.16T7hg
0.36788 | 0 9. 92546¢ 0.19117p% 0.23140p% 0.01997p% 0.057%g 0.0hde0p® 0.965
.50 3661 .9905hg 2316962 2787082 0605182 .Oh13g .0595h5° .ga1
%0 | 2.25037 1.30694g 1.000656% 1.228318% .26234p2 .0859g .23assp? 866
.95 | 2.97020 1.he768g 1.5%171p2 1.903498° ko192 .1067g -3hTTTES 859
99 [ %.60016 1.70109g 3. 2723067 b.0T0622 . 860h552 15565 . TL03582 .&26
959 | 6.90726 2,05008g 6.52081p8 8.651T3p2 1,80176p% .2264g 1. k63682 .603
3
A (0.26774g) 13196'_VP2E|2 .16665y1,252 .oshaayl,eﬂe -------- .oe@mPase . T59
(b) Plotting positions
Ewm sxtremes in inoreasing rank from 1 o _u-"'"]
Rank, Cbearved Plotting position, Rank, Obearved Plotting positiom, Rank, Obsarved Plotting position,
T extrone r/{n + 1) r axtrems rf{n + 1) r extrame r/(n +
1 0.T% 0.0%17 1 1.00g 0.4585 21 1.318 0.87%0
2 < To 228553 ig 1.01g ;goo o2 1,38g .g;g;r
. . 1.02g .3817 23 1.l .
i e 2687 1 1ot ‘3653 _—
3 8lg .20B% 15 1.08g .62%0 Bum 23.62
6 .88y 2500 16 1.13g 6667
g .90g 2017 i7 1.15g 7083
.90z 5355 18 1.16g 700
9 g 3730 19 1.20g 7917
10 .98 167 a0 1.20g -E535

SEstimate of parvametar u.
_'bEltimta of paramcter f.

£G0¢ NTL YOVH
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TABLE T
WEIGHTS FOR MINIMUM-VARTANCE, UNBIASED, LINEAR ORDER-STATISTICS ESTIMATOR

L=E = ; (2 + bin)xi, OF PERCENTAGE POINTS £, = u + Byp, AND

VARIANCE var (£p) = Qu = (Apyp® + Byyp + C,)p2 FOR SAMPLE

SIZE n=2T0 6 AND :-L_L§x2§...§xn

Weights, a4y + bin, of xy
% % % % % %5

2 |a; | 0.91637 | 0.08363
by | -0.72135 { 0.72135

Q | (0-71286yp7 - 0.1286ky;, + 0.65955)8°

5 |ay 0.65632 0.25571 0.08797
by | -0.63054 0.25582 0.37473

Qs (0.311-11-72yP2 + 0.0495ky, + o.h0286) g2

4 | ag 0.51100 0.2639% | 0.15368 | 0.07138
by -0.55862 0.08590 0.22392 | 0.24880

q, | (0-22528y32 + 0.069385;, + 0.29346) 2

5 |2 0.41893 0.24628 0.16761 | 0.10882 | 0.05835
-0.50313% 0.00653 0.13045 | 0.18166 | 0.18448

Q5 (0.16665yp7 + 0.06798yp + 0.25140) g2

H

6 |a; 0.35545 0.22549 0.16562 | 0.12105 | 0.08352 | 0.04887
by | -0.45928 | ~0.03599 0.07319 | 0.12673 | 0.14953 | 0.14581

Qg | (0-13196y,2 + 0.06275y, + 0.19117)p2
I l |




TABLE II

MEANI, VARTANCES, AND COVARIANCES OF ORDFR STATISTICS ¥y; IN SAMPLES OF n FROM
REDUCED FXTREME-VALUE DISTRIBUTION F(y) = exp (-e"y) FOR n=21T0 6

AND VlSFQS- . -Syn

. , Means, Variances and covariances, Ugq = “,j:l.
B(71) y=1 e y=3 y=b J=5 §=6
2 1 -0.11593152 0.6840280L 0.h80h5301
2 1.27036285 1.64493L07
3 1 -0.40361359 0,44849796 0.301371h4 0.24378810
2 A5943263 65852235 54625438
3 1.67582755 L. 6uhoslkoT
k 1 -0.57351263 | 0.34402417 0.2245535L4 0.17903454 0.,15368518
2 . 10608352 J41553113 33720966 29271188
ﬁ 81270175 .651.80236 L5Th32356
1.9635100% 1.644G5h07
5 1 -0.69016715 0.28L86L0 T 0.18208536 0.14358737 0. 12257865 0.10901329
2 -, 1068945k .308k9748 L2HETETEL . 18967363
3 L255506L ‘ 10596292 6i267072 31716095
4 1.07093582 907319 -2&9;339
5 2,18665358 1.64L93koT7
6 1 -0. 77726368 0.2465820 o.lﬁlgﬁ'(h 0.1212161 0.1029164 0.0911619 0.0828542
2 -.25453448 .2 56 1967062 .1680628 1454530 ,1361910
E .1883853L 2976159 .2561680 L, 2288750 20933&6
66271568 _ 4018552 3614555 +3320451
3| L.2posTs BNTB9%6 | 5008567
<] 2.36897513 L.6L4GR41

CCO¢ NI YOVN
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ART.E T

VARTANCES AND EFFICIENCIE] OF MINIMUM~-VARIANCE, UNBIASED, LINEAR, ORDER-STATISTICS

ESTIMMTOR L = %, OF THE PARAMETER &p FOR SELECTED PROBABILITY LEVELS P

AND FOR SAMPLE SIZE n =2 TO 6

Ea.riances based on table I:I

(a) Variances (units of p2)

P YE Q, ° % % Q 8 g
0.36788 | 0 Py 10866 |Po.65955  |Po.hoess  |Po.29346  [Po.exiko  [Po.19117
4o .087k2 | 1.15825 L6537k 40985 .30125 23861 19766
.50 36651 | 137873 .70802 L6732 34015 27870 25189
.60 LETLTA | 1.72827 .89h3) .59168 Qe 35225 29286
.70 1.0%093 | 2.28472 1.283550 82030 EChkse 47859 (35611
.80 1.4999h | 3.24Th3 2.0681% 1.25271 L9037 . 70829 58218
.90 2.25057 | 5.34410 3.97502 2,26002 1.59046 1,20831 1.00065
.95 2.97020 | T.99866 6.55752 3.59108 2.48700 1.90349 1.5%171
975 3.67625 | 11.210314 9.80724 5. 24369 3.59517 2.73352 2.20527
.99 4.60016 |16.33798 15.13171 7.925%6 5.3799% 4.07062 3.272350
999 | 6.90726 | 33.66365 33 . 73306 17.19133 11..52099 8.651 Tk 6.920Lk
1 (*) | C.607933,2 | C.71186y7 | ©.3ubTiyp? | ©.22528y52 | ©. 166652 | °. 13196y,
‘BCremér-Rao lower bound is Q.. = Q /n, where Q = (0 60?935,_2 + 0.5140hy_ + 1 10866 )82
and n 1is sample size. L ol o b ¥

7l

bThese give the variances of the order-statistics estimstor of the parameter u.

CThe variances for P = 1 are all infinite. Expressing them by means of the dominant
term in Q, permits finding their ratios To obtain the efficiencies. Alsc, the coefficients
in yPE are the variances for the order-statistics estimator of the parameter pB.

¢€G0¢ NI VOVN



TABLE ITT - Concluded
VARTANCES AND EFFICIENCIES OF MINIMM-VARIANCE, UNBIASED, LINEAR, ORDER-STATISTICS

ESTTMATOR L=EP OF THE PARAMETER £p FOR SELECTED FROBABILITY LEVELS P

€COC NI VovN

AND FOR SAMPIE SIZE n =2 TO 6

(b) Efficiencies

_ 1 _ 1 1 1 1
P 2| B2=5 %% | B[ | By -/ | B = W[ | B =g Q%
0.36788 | 0 80.8405 20.9173 20,9445 8p.95802 80.9666
4o 087h2 8859 Oh21 9612 708 L9766
-50 36651 SToT .9834 9872 989k 9909
.60 67173 9662 9737 9781 9813 9836
.70 1.0309% 8900 928k Sk50 9548 8613
.80 1.49G0k 7851 L8611 8977 al7e0 9297
.90 2.25037 6722 . 7882 8400 .8702 801
.95 2.97020 6099 LTHES 8oko .8hoh 8647
975 3.67625 S5TLT 7129 7603 .8205 8475
.99 L.60016 5399 L6872 7592 8ozt 8321
999 6.90726 Lo 6527 7505 L7782 8107
1 (o) ® 170 b 5879 P 676 b oogs ° 7678
Brmco pdarm dlia aPPIadamadtans AP +ha arder_atotiaticn estimetor of the narameter 1
LLUEDE mIVE LT Clilbloleloo il ULLAs Wk i T Uk W i U i ol O bt o =
imiting efficiency as P approaches 1 These values are also the efficiencies for
the estimator of the perameter §. ) W

clL



T6 NACA TN 3053
TABLE IV '
EFFICIENCY OF ORDER-STATISTICS ESTIMATORS FOR VARIOUS SAMPLE
SIZES n = km + m' PARTTTIONED INTO SUBGROUPS AS
INDICATED FOR P = 0.99 AND P =1
Efficiency, Efficiency,
n km + m' percent n m + m' percent

P=0.99|P=1 P=0.99|P=1

2orkx?2 54%.0 ko7 21 {3x6+ 3 80.8 3.6
ZorkX3 68.7 58.8 2 {3x6+14 81.8 ™".9
b orkx k 7.9 67.5 I 25 |3x6+5 82.6 7.9
50rkx5 80.3 -0 2 Lk x6 835.2 76.8
6orkx6 83.2 76.8 25 5% 5 80.3 75.0
a7 I1x5+2 70.5 60.7 26 | bhx6+2 T9.-9 T2.3
bg 1x6+£2| 3.3 |63.8 o7 lhix6+3| 8.3 |73
9 1x6+3 T7-7T 69.7 28 | hx 6+ 1 81.9 .3
10 2%x5 80.3 3.0 29 {bx64+5 82.7 T6.1
30 5x 6 83.2 76.8

11 1x6+5 81.9 75.0 3L | 5x5+ 6 80.8 .7
12 2x 6 83.2 T76.8 32 1 5x6+2 80.5 3.1
13 2x5+53 T1.3 69.1 35 | 5x6+3 8L.6 .7
Gl 2x6+2| Th.T |66.7 3 |5x6+4] 8.3 |75.6
15 3%x5 8.3 [73.0 1935 Tx5 80.3 |T73.0
16 2x 6+ L 8L.3 .2 36 6x 6 85.2 T76.8
17 2x6+5 82.3 .6 37T Tx5+2 78.2 70.3
18 3% 6 83.2 76.8 38 | 6 X6+ 2 80.9 -7
19 3x5+ 4| 79.3 |TL.T 39{6x6+3] 8L9 |T75.0
20 kx5 80.3 3.0 €40 8x 5 80.3 7.0
6L |11x5+6]| 8.6 |73.3

for

for

for

for

for

87f partition is 7 =1 X 4 + 3, then efficiencies are T2.T percent
P =0.99 and 63.4 percent for P = 1.

Pre partition 18 8 = 2 x 4, then efficiencies are 75.9 percent

P = 0.99 and 67.5 percent for P = 1.

CIf partition is 14 = 2 X 5 + k4, then efficiencies are T9.1 percent
= 0.99 and T1.3 percent for P = 1.

Are partition is 35 = 5 x 6 + 5, then efficiencies are 82.8 percent

P = 0.99 and 76.2 percent for P = 1.

erf partition is 40 = 6 x 6 + L4, then efficiencies are 82.k percent

P =0.99 and 75.7 percent for P = 1.



TARLE ¥

BIASES, MEAN EQUARE ERRORS, AND RELATIVE ZFFI0IENCIES (F FROFOSED QRDER-STATISTICS ESTIMATOR gP

MTMOET. PEMTTMA REETIT IR n‘FU'nAT'H’B_’T\

mn R mr 1 AAQEND [4).] EMPTRTOAT, SAMEY,
L TURNLRIT DA LA FE LA SG'J L L LA ek ke AR

TH
AL A VAT LU Uik, bf

R P = 0.95 AND SBAMPLE BIZE n = 10, 20, AND 30

[Valuss of R sbown in fig. §]

TROM
Fr U TR E g eV

'ﬁT A MDT
LR LS y

Mean squara error (MIE)
( Blas, wnits :‘-" B mits of @ ’ Relative efficiency,
ot everage fulue for e8oh | (overage value for sach R = MIE/Q*
(100 zamples SRR set of 100 samples)
sach 10 20 30
n = 10 n =20 na n = 10 n=20, |ln=3 =n- ! -nu 4 _n= 4
5= 1,200 [N o 605 |Nohod [N 120 |1 - 605 N - ko0 [q - olenstuid gng?g%g.'}ge 3 o Sbeanee
=N Fe) il 1N N I7a) = 7oy 7N AR
&/ =) &), & &) o/ &/ 1©) 2%
1 -0.25961 | -0.08075 | -0.03T7L | 0.93875 | 0.56T707 | 0.327&2 0.986 - 1,192 1.062
2 -.26375 -~ 03465 | -,08069 | 1,13608 39816 | L2348 1.164 530 826
5 -.16007 -.17ee1 | -.08280 m 50061 39850 1 1.09% 1.292
4 -.34090 | -.05595 | -.09250 59028 | 41688 87 1.240 1,352
5 ~.16118 ~. 20845 81749 81T 859 1.222
6 -.15951 -.11%58% 1. 13818 52853 1.196 1111
T -.10497 . 927
8 -.15613 92989 977
9 -‘211#75 873@ 4918
10 ~. 18451 ;@356 ] 1.286
1 -, 29129 1.00460 1.036
12 | =.322m6 1.02068 1.072
Average -.218027 | - 11464 | -.06842 [ .9601k | 53056 | .3hgho 1.018 1.115 1.133
Proportion of sets favorable to proposed estimator (R > 1) 5 out of 12 5 out of 6 3 oub of 4

BPor explanation of Q, see equation {B8) in appendix B and accompanying discussion.

¢€C0¢ NI VOVH
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TABLE VI
BIAS AND EFFICIENCY CHARACTERISTICS OF ORIGINAL GUMBEL ESTIMATOR EG o ARD
2
SIMPLIFIED (ASYMPTOTIC) FORM ‘EG, FOR SAMPLE SIZE n = 10, 20, AND 30

AND n INFINITE, FOR P = 0.95, 0.99, AND 1

) Mean s Relative efficiency
Bias, Variance, error %muar)e of order-statistics
units of B | units of g2 2’ estimator to Gumbel
P units of B estimator, R = MSE/Q®
E&enl S¢ |%,;m | ¢ |%n | S te,n Sa
| ® [ ® | ® | & ® @ ® ©)

n = 10 (computed from empirical sampling results)

0.95(0.64 |-0.22 [1.48 0.92 1.89 0.97 1.99 1.02
.99[1.02 -.37 |3.32 1.97 k.36 2.10 2.14 1.0%
by.00 23y, | --09%p .l5y?2 .oayP2 .20yP2 .o9yP2 2.38 1.06

n = 20 (computed from empirical sampling results)

0.95|0.k2 |-0.11 |0.69 0.52 0.87 0.53 1.8% 1.11
.99| .66 -.19 |1.56 1.12 1.99 1.16 1.96 1.1%
P1.00| .15yp| --05vp| -OTyp2| -05yp2| -09yp2| -05yp2 | 2.18 1.19

n = 30 (computed from empirical sampling results)

0.95/0.33 |-0.07 |o.k5 o3k lo.sk  lo.35 1.76 1.1%
.99| .53 =12 .96 5 .15 1.24 .76 1.89 1.16
P1.00| .12yp| --O3yp| -Obyp .OEyP? .06y2 .03yP2 2.12 1.21

n infinite (computed from theory)

0.95 0 0 0] 0 0 0 1.237 1.237
.99 0 0 0 o 0 0 1.290 1.290
b1.00] o 0 0 0 0 0 1.389 1.389
8Far velues of Q, see table V, headings for columns 8, 9, and 10.
b.

For P = 1, all quantities except relative efficiency are infinite,
for finite sample size. Expressing them in terms of Yp (which is also

infinite) permits comparison for values of P very near to 1.
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TABLE VII

FROBABILITIES OF EXTREMES

(a) Plotting positions

Extremes Frequency Mean and _Standard Deviation Cumulative” Frequency Plotting Positions
X p X-p xt-p m m/(N+1)

2 75 : 1_ . 0.04/7

1 75 2 4 20833,
LTS 2 2. (250

. 20 A 01667
. gl 5 to .(1._243.&,0_____
55 b to Q;ZEQL,.,___
.90 7+ 0.29/6

Fo F 2.3323 , 00
73 y AR L 03750 .,
.98 L _lo_ 0.4/67_,,
.00 1v o 4583,,
Lo/ 2 4, 0:5000 4
[:02 3 . o.5416 10

/.08 4, . t

[- 08 15 4 £-6250 ,

I L5 le - 0ebblT 4o
[ 4S5 17 0.7083 ,,

[:/6 2 L7500 o
[- 20 19 L7247 o

[.20 a0 ., £-82333,
[ 31 20 4 0.3750,

[ 38 22 2.9167 ,,

143 23 . 0.9583 .

$ e to

c
g & ¢ ¢

sums: Ne 23 @ _2362 = 25326 Arbitrary Mean: (=4

Z(xp) (x2p)
Ty S outo: MHACA = Langley = Temple T
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TABLE VII - Concluded

PROBABILITIES OF EXTREMES

(b) Mean and standard deviation, parameters, line of
expected extremes, and confidence band

I. Mecn ond Stondard Deviotioms

N=23 _  fepe_=23.62 I (xtp) = R5: 1326
VN4 £33 Meon: % = l-o270 = . [-0937
Arbitrary Meon: x, = (2] . e [:0547
True Mean X = L0820 (s,) = 0.038%0
N/(N-l) = Stondard Deviatlon: s, = __0./950
. Porameters? .
.Y 3, V.- 0.5223
Vars, /oy s 0o (304 Vo (l/aye 2.09%3
1V /VR-—0:0376  us%350/0)« g.9317 =mode

NOTE: Upper sign used for moxma,
lower sign for minimo.

IIL Line of Expected Extremes:

Environmantol Protaction Section, Research 8 Develapment Bronch,
WNilitary Planning Division, Office of The Quartarmaster Ganeral.

x=ut (l/o}ys — 0-9317 : ¥ 0. 1804 y
y: -200 0.00 300 800 .e.e8 480
y(i/e): =2 3608 0.00 SHI2 9020 Ho59 _ _.339%
x: e 5709  su= 93T _[.£729 /8337 . Xioo

= ] —

NOTE: Values x,, ond X,,, cre for retumn perlods of 10 end 100
IT. Half-width of 0,68269 Confidence Band, 0y . = 03, VN/(0VR) « (0, . VR) [(W]:

dx) : .150 .200 .300 .400 .500 .600 .700 .800 .850
c,aVN: 1255 1.243 1.268 1.337 1443 1598  1.835 . 224 2.808
i, Tem: s 0472 0467 _ 0477 .0503 0543 .o0bol 0690 _.0¥3 _.0972
§¢ For largest value, A, . =L.141 (1/0)= ) 0.305%
§§ For next-to- largest volue, &,,.,° rsofmanti - 0. 1369
GT ¥ - Expected Extreme;in T periods (years,stc): xr= X +Zy (Xwo=Xo) ¢  Xwo~ X =
§§, T Zr Zilteste) % T Zy Zeltwexd % T Zy Zilter%e) X
§§ 5 480 — |60 w8t | 140 Li44
gg 20 306 — |70 8 — |80 wrd_
2 25 408 | eo .905 200 1296 _
gg 30 483 |9 w955 - . |30 !a469 P
Ez 38 se0 |10 1000 400 1682 -
§§ 40 so7r —_ Juwo 08t ——____|so0 1887 —_—
s w688 |20 worsa —— | 750 18858 —_—
so 703 1o thie —— _ |i000 1990 -
Place:
?J::.'u;‘:: Data : NACA — Laﬂﬁk);iﬂw
GComputer: __WR7¢ Date: Sla/sa

é



TABLE VIIT

AND STANDARD DEVIATION s FOR SAMPLES OF n = 10, 20, AND 30

COMPARED WITH CORRESPONDING THECRETICAIL

VALUE WHERE OPTAINABLE

EMPIRICAL, SAMPLING VALUES (OF FIRST AND SECOND MOMENTS OF SAMPLE MEAN ¥

n =10 n=20 n = %0
Estimate (1,200 samples) (600 samples) (400 samples)
ot Empirical Theoretical Empirical Theoretical ﬁ@uical Theoretical

values velues values values values values
E(¥) 0.5698 0.5772 0.5698 0.5772 0.5698 0.57T72
o>(¥) .1663 .1645 .088L .0822 .0535 .0548
E(s) 1.1656 |  —mem-- 1.2211 | eemee- 1.2459 | cemee-
a2(a) A321 | ceeeaa OT5 | meeee- N7 5, T [ ——
o(¥,s) L0800 | —meeee 0438 ———— oegf ------

€C0¢ NI VOVN
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COMPARISON CF CONFIDERCE-INTERVAL HALF-WIDTHS FOR EXTRFME PREDICTIONS GIVEN BY GUMBEL METHUD,
BY MODIFIED METEUD, AWD BY ORDER-STATISTICS METHOD, FOR SAMPLES OF n = 10, 20, AND 30
AND FOR CONFIDENCE LEVELS QF 68 PEROENT AND 95 PERCENT

n = 10 n =20 nuo 50
Ordar- Order . Order-
p | Gaber | Ul lstatictios | cwmper | ML | oiibiatics | cumber Hob Tied  letetistics
method method method method method method
(s) (b) (e} (a) (b) (o) (a) (b) (o)
@ ® €), ® ® ® @ ® ©

68-percent confidence lavel

A= 1b1p (A7 = 1.101Bp8 {4 = fg/2 | A 1.K15 | A" = LUMBRR |4, = (B8 |4 = L.10% |40 = LuBeS A = g5

0.9 1.141p 0.6558 0.9758 1.1bip 0.639p 0.650p 0.5558
.99 1.1k1p 1.247p 1.h27p 1.141p .941p 1.009p .1.1L1p 0.T768p . 8098
.999 | l.1kip 1.817p 2.080p Ll.1L1p 1.3088 1.7 L.1h1p 1.124p 1.176p
. 95-percent canfidence level _ o
A= 3.067p | &' = 5.007BpB | &) = 2R /2 | & = 3.067B | A" = 3.067Bp | 4, = 25/ |4 = 3.0678% &' = 3.067B:8% |4, = 2Rg/5 |~
0.95 3.0678 2.297p 1.9708 3.067p 1.7178 1.h54p 1.1818
.99 3.067p 3%232 2.8998 3.067p 2.5508 2.151p 3.0678 2.0658 1.7hep
999 | 3.0078 k. L. 2h58 3.0678 3.TOTB 3.1598 3.0678 3.022p 2.554p

BYalues of Bp m KS/xE) oe(ﬁuﬂ 1/2 are based on empirical sempling methods. Bee eppendix B.

bpor aexplaration of quantity of form (l/k)Qm gppearing in A,, sea oquation (BE8) in sppandix B and acconpanying discussion.
CBased on assumption of normality for order-statistics estimator. Yar discusaion, see mppendix E.

( Appli‘)as anly for PR nf{a+ 1) = 0.505, 0.952, and 0.968 for n = 10, 20, and 30, respectively. See footmote 31
appendix E). -
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Figure 3.~ Comperison of efficilencles of order-statistics estimator Ep
for semples of sizes 2, 3, 4, 5, and 6, or for samplea of any size

if broken into equal subgroups of 2 to 6.

(Data from table III(b).)
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Figure L.- Graphical analysis of a sample of 25 maximum acceleration
increments by method of order statistics. (Data from work sheet 2.)
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Figure 5.~ Comparison of order-statistics and Gumbel methods of analyzing
a sample of 23 maximm acceleration increments, showing 68-percent con-
trol curves. Eight observations at lower end omitted to avoid crowding.
(Data from work sheet 2 and table VII(D).)
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